Home
Class 14
MATHS
If 3 cos^(2) A + 7 sin ^(2) A = 3, 0^(@...

If `3 cos^(2) A + 7 sin ^(2) A = 3, 0^(@) le A le 90^(@) ` then the value of A is `:`

A

`90^(@)`

B

`45^(@)`

C

`0^(@)`

D

`30^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3 \cos^2 A + 7 \sin^2 A = 3\) for \(A\) in the range \(0^\circ \leq A \leq 90^\circ\), we can follow these steps: ### Step 1: Use the Pythagorean Identity We know from trigonometric identities that: \[ \sin^2 A + \cos^2 A = 1 \] We can express \(\sin^2 A\) in terms of \(\cos^2 A\): \[ \sin^2 A = 1 - \cos^2 A \] ### Step 2: Substitute into the Equation Substituting \(\sin^2 A\) into the original equation gives: \[ 3 \cos^2 A + 7 (1 - \cos^2 A) = 3 \] ### Step 3: Simplify the Equation Expanding the equation: \[ 3 \cos^2 A + 7 - 7 \cos^2 A = 3 \] Combine like terms: \[ (3 - 7) \cos^2 A + 7 = 3 \] This simplifies to: \[ -4 \cos^2 A + 7 = 3 \] ### Step 4: Isolate \(\cos^2 A\) Rearranging gives: \[ -4 \cos^2 A = 3 - 7 \] \[ -4 \cos^2 A = -4 \] Dividing both sides by -4: \[ \cos^2 A = 1 \] ### Step 5: Solve for \(\cos A\) Taking the square root of both sides: \[ \cos A = 1 \] Since \(A\) is in the range \(0^\circ \leq A \leq 90^\circ\), we find: \[ A = 0^\circ \] ### Final Answer Thus, the value of \(A\) is: \[ \boxed{0^\circ} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 3cos^2A + 6sin^2A = 3,0^@ le A le 90^@ , then the value of A is :

If 3cos^(2)A + 6sin^(2)A = 3 , 0^circ le A le 90^circ , then the value of A is: यदि 3cos^(2)A + 6sin^(2)A = 3 , 0^circ le A le 90^circ है, तो A का मान हैः

If sin x = (3)/(5), 0 le x le 90^(@) , then the value of cot x.sec x is :

If 2cos^(2)x- sin^(2)x= -0.25 and 0^(@) le x lt 90^(@) , then x= ?

If 8 sec^(2)x- 7 tan^(2)x= 11 and 0^(@) le x le 90^(@) , then x= ?

If 3sec^(2)x - 2tan^(2)x = 6 and 0^(@) le x le 90^(@) then x = ?

If sin 2A =sin 3A and 0 le A le 90^(@), then A is equal to

If sin theta - cos theta =0, 0 le theta le 90^(@) then the value of theta is _____-