Home
Class 14
MATHS
If a^(3) - b^(3) = 210 and a-b = 5, the...

If `a^(3) - b^(3) = 210` and `a-b = 5`, then `( a+ b)^(2) - ab` is equal to `:`

A

52

B

42

C

32

D

38

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( a^3 - b^3 = 210 \) 2. \( a - b = 5 \) We need to find the value of \( (a + b)^2 - ab \). ### Step 1: Use the identity for the difference of cubes The difference of cubes can be factored using the identity: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] Substituting the known values into this identity: \[ 210 = (5)(a^2 + ab + b^2) \] ### Step 2: Solve for \( a^2 + ab + b^2 \) Now we can solve for \( a^2 + ab + b^2 \): \[ a^2 + ab + b^2 = \frac{210}{5} = 42 \] ### Step 3: Use the identity for \( (a + b)^2 \) We know that: \[ (a + b)^2 = a^2 + 2ab + b^2 \] We can express \( a^2 + b^2 \) in terms of \( a^2 + ab + b^2 \): \[ a^2 + b^2 = (a^2 + ab + b^2) - ab = 42 - ab \] ### Step 4: Substitute into \( (a + b)^2 - ab \) Now we can substitute \( a^2 + b^2 \) into the equation: \[ (a + b)^2 - ab = (a^2 + b^2 + 2ab) - ab = a^2 + b^2 + ab \] Substituting \( a^2 + b^2 = 42 - ab \): \[ (a + b)^2 - ab = (42 - ab) + ab = 42 \] ### Final Answer Thus, the value of \( (a + b)^2 - ab \) is: \[ \boxed{42} \]
Promotional Banner