Home
Class 14
MATHS
ABCD is a cycle quadrilateral such that ...

ABCD is a cycle quadrilateral such that is the diameter of the circle circumscribing it and `/_ ADC = 150^(@)`. Then, `/_ BAC` is equal to `:`

A

`60^(@)`

B

`50^(@)`

C

`40^(@)`

D

`38^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the measure of angle \( \angle BAC \) in the cyclic quadrilateral \( ABCD \) where \( AC \) is the diameter of the circle and \( \angle ADC = 150^\circ \). ### Step 1: Understand the properties of cyclic quadrilaterals In a cyclic quadrilateral, the sum of the opposite angles is \( 180^\circ \). Therefore, we can write: \[ \angle ADC + \angle ABC = 180^\circ \] ### Step 2: Substitute the known angle We know that \( \angle ADC = 150^\circ \). Substituting this into the equation gives: \[ 150^\circ + \angle ABC = 180^\circ \] ### Step 3: Solve for \( \angle ABC \) Now, we can solve for \( \angle ABC \): \[ \angle ABC = 180^\circ - 150^\circ = 30^\circ \] ### Step 4: Use the property of angles in a semicircle Since \( AC \) is the diameter of the circle, by the property of angles subtended by a diameter, we know that: \[ \angle ABC = 90^\circ \] ### Step 5: Analyze triangle \( ABC \) In triangle \( ABC \), we can use the angle sum property: \[ \angle BAC + \angle ABC + \angle ACB = 180^\circ \] We already have \( \angle ABC = 30^\circ \) and \( \angle ACB = 90^\circ \). So we can substitute these values: \[ \angle BAC + 30^\circ + 90^\circ = 180^\circ \] ### Step 6: Solve for \( \angle BAC \) Now, simplify the equation: \[ \angle BAC + 120^\circ = 180^\circ \] Subtract \( 120^\circ \) from both sides: \[ \angle BAC = 180^\circ - 120^\circ = 60^\circ \] ### Conclusion Thus, the measure of \( \angle BAC \) is \( 60^\circ \).
Promotional Banner

Similar Questions

Explore conceptually related problems

ABCD is a cyclic quadrilateral such that AB is the diameter of the circle circumscribing it and angleADC = 150^(@) . Then. angleBAC is equal to:

ABCD is a cyclic quadrilateral such that AB is the diameter of the circle circumscribing it and angle ADC=155^@ . Then angle BAC is equal to: ABCD एक ऐसा चक्रीय चतुर्भुज है कि AB इसे घेरने वाले वृत्त का व्यास है तथा angle ADC=155^@ है | कोण BAC का मान ज्ञात करें |

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angle ADC= 130^@ . Then angle BAC is equal to:

ABCD is a cyclic quadrilateral such that AB is the diameter of the circle circumscribing it and angle ADC=129^@ . Then angle BAC is equal to: ABCD एक ऐसा चक्रीय चतुर्भुज है कि AB इसे घेरने वाले वृत्त का व्यास है तथा angle ADC=129^@ है | कोण BAC का मान ज्ञात करें |

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angle ADC = 125^@ . Then angle BAC is equal to: ABCD एक चक्रीय चतुर्भज है जो इस प्रकार है कि AB इसे घेरने वाले वृत्त का व्यास है तथा कोण ADC = 125^@ , है | कोण angle BAC का मान ज्ञात करें |

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angle ADC=158^@ . Then angle BAC is equal to : ABCD एक ऐसा चक्रीय चतुर्भुज है कि AB इसे घेरने वाले वृत्त का व्यास है और angle ADC=158^@ है | कोण BAC का मान ज्ञात करें |

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angle ADC = 144^@ . Then angle BAC is equal to: (pi=22/7) ABCD एक चक्रीय चतुर्भज है जो इस प्रकार है कि AB इसे घेरने वाले वृत्त का व्यास है तथा कोण ADC = 144^@ , है | कोण angle BAC का मान ज्ञात करें |

ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and angle ADC = 148^@ . Then angle BAC is equal to: ABCD एक चक्रीय चतुर्भज है जो इस प्रकार है कि AB इसे घेरने वाले वृत्त का व्यास है तथा कोण ADC = 148^@ , है | कोण angle BAC निम्नलिखित में से किसके बराबर होगा :