Home
Class 14
MATHS
If x + ( 1)/( x) = 4, then x^(3) + ( 1)/...

If `x + ( 1)/( x) = 4`, then `x^(3) + ( 1)/( x^(3)` is equal to `:`

A

a) 50

B

b) 52

C

c) 64

D

d) 40

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{1}{x} = 4 \) and find the value of \( x^3 + \frac{1}{x^3} \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ x + \frac{1}{x} = 4 \] ### Step 2: Cube both sides To find \( x^3 + \frac{1}{x^3} \), we can use the identity: \[ \left( a + b \right)^3 = a^3 + b^3 + 3ab(a + b) \] In our case, let \( a = x \) and \( b = \frac{1}{x} \). Therefore, we can cube both sides: \[ \left( x + \frac{1}{x} \right)^3 = 4^3 \] Calculating the right side: \[ 4^3 = 64 \] ### Step 3: Expand the left side using the identity Using the identity mentioned: \[ x^3 + \frac{1}{x^3} + 3 \left( x \cdot \frac{1}{x} \right) \left( x + \frac{1}{x} \right) = 64 \] Since \( x \cdot \frac{1}{x} = 1 \), we can simplify: \[ x^3 + \frac{1}{x^3} + 3(1)(4) = 64 \] This simplifies to: \[ x^3 + \frac{1}{x^3} + 12 = 64 \] ### Step 4: Solve for \( x^3 + \frac{1}{x^3} \) Now, we isolate \( x^3 + \frac{1}{x^3} \): \[ x^3 + \frac{1}{x^3} = 64 - 12 \] Calculating the right side gives: \[ x^3 + \frac{1}{x^3} = 52 \] ### Final Answer Thus, the value of \( x^3 + \frac{1}{x^3} \) is: \[ \boxed{52} \] ---
Promotional Banner