Home
Class 14
MATHS
x, y and z all are positive numbers. If ...

x, y and z all are positive numbers. If `3^x>9^y` and `2^y >4^z`, then which of the following is TRUE?
x, y तथा z सभी धनात्मक संख्या है। यदि`3^x>9^y` and `2^y >4^z` है, तो निम्नलिखित में से कौन सत्य है।

A

`xgtygtz`

B

`xgtzgty`

C

`zgtygtx`

D

`ygtxgtz`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

x, y and z are prime numbers and x+y+z = 38. What is the maximum value of x? x,y तथा z अभाज्य संख्याएँ है तथा x+y+z = 38 है। x का अधिकतम मान क्या है?

If x,y and z are three numbers such that x+y = 13, y+z = 15 and z+x = 16, then the value of (xy+xz)/(xyz) is : यदि x,y तथा z तीन ऐसी संख्याएँ है कि x+y = 13, y+z = 15 तथा z+x =16 है, तो (xy+xz)/(xyz) का मान ज्ञात करें ।

If x,y,z are positive real numbers and x+y+z=1, then minimum value of ((4)/(x)+(9)/(y)+(16)/(z)) is

Given that x,y,z are positive real numbers, if (x+y)^2-z^2=8 , (z+y)^2-x^2 =10 , and (x+z)^2-y^2=7 , then (x+y+z) is equal to : दिया गया है कि x, y और z धनात्मकवास्तविक संख्याएं है | यदि (x+y)^2-z^2=8 है, (z+y)^2-x^2 =10 है, और (x+z)^2-y^2=7 है, तो (x+y+z) का मान किसके बराबर है ?

If x(x+y+z) =4, y(x+y+z)=16 and z (x+y+z)=29 and x, y & z are positive numbers. Find x, y & z=?

If x.y,z are positive real numbers such that x^(2)+y^(2)+z^(2)=27, then x^(3)+y^(3)+z^(3) has

x, y and z are distinct positive integers in which x and y are odd and z is even. Which of thefollowing can not be true ? (1) (x-z)^2 y is even (2) (x-z)^2y^2 is odd (3) (x-z)y is odd(4) (x-y)^2z is even