Home
Class 14
MATHS
If x=1/(1+1/(1+x)) and y=2/(2+1/(1+y)) t...

If `x=1/(1+1/(1+x))` and `y=2/(2+1/(1+y))` then which of the following can be the value of `X+Y`?

A

`(-sqrt(5)-sqrt(17)+3)//4`

B

`(2sqrt(5)+sqrt(17)-3)//4`

C

`(-sqrt(5)+sqrt(17)+1)//4`

D

`(sqrt(5)+sqrt(17)-1)//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) and \( y \) given the equations: 1. \( x = \frac{1}{1 + \frac{1}{1 + x}} \) 2. \( y = \frac{2}{2 + \frac{1}{1 + y}} \) Let's break it down step by step. ### Step 1: Solve for \( x \) Starting with the equation for \( x \): \[ x = \frac{1}{1 + \frac{1}{1 + x}} \] First, simplify the denominator: \[ \frac{1}{1 + x} = \frac{1 + x}{1 + 2 + x} = \frac{1 + x}{2 + x} \] So we can rewrite the equation as: \[ x = \frac{1 + x}{2 + x} \] Now, cross-multiply to eliminate the fraction: \[ x(2 + x) = 1 + x \] Expanding this gives: \[ 2x + x^2 = 1 + x \] Rearranging the equation leads to: \[ x^2 + x - 1 = 0 \] ### Step 2: Solve the quadratic equation for \( x \) Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = 1, c = -1 \): \[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ x = \frac{-1 \pm \sqrt{1 + 4}}{2} \] \[ x = \frac{-1 \pm \sqrt{5}}{2} \] Taking the positive root (since \( x \) must be positive): \[ x = \frac{-1 + \sqrt{5}}{2} \] ### Step 3: Solve for \( y \) Now, we solve for \( y \): \[ y = \frac{2}{2 + \frac{1}{1 + y}} \] Again, simplify the denominator: \[ \frac{1}{1 + y} = \frac{1 + y}{1 + 2 + y} = \frac{1 + y}{2 + y} \] So we can rewrite the equation as: \[ y = \frac{2(2 + y)}{2(2 + y) + 1 + y} \] Cross-multiplying gives: \[ y(2 + y + 1) = 2(2 + y) \] Expanding leads to: \[ y^2 + 3y = 4 + 2y \] Rearranging gives: \[ y^2 + y - 4 = 0 \] ### Step 4: Solve the quadratic equation for \( y \) Using the quadratic formula again: Here, \( a = 1, b = 1, c = -4 \): \[ y = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-4)}}{2 \cdot 1} \] \[ y = \frac{-1 \pm \sqrt{1 + 16}}{2} \] \[ y = \frac{-1 \pm \sqrt{17}}{2} \] Taking the positive root: \[ y = \frac{-1 + \sqrt{17}}{2} \] ### Step 5: Calculate \( x + y \) Now we can find \( x + y \): \[ x + y = \frac{-1 + \sqrt{5}}{2} + \frac{-1 + \sqrt{17}}{2} \] \[ x + y = \frac{-2 + \sqrt{5} + \sqrt{17}}{2} \] ### Final Answer Thus, the value of \( x + y \) can be expressed as: \[ x + y = \frac{\sqrt{5} + \sqrt{17} - 2}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

5/(x-1)+1/(y-2)=2 and 6/(x-1)-3/(y-2)=1 then find the values of x and y

if x=1/(√3+√2) and y=1/(√3-√2) . then find the value of x+y and x-y

x^2dy+(y-1/x)dx=0 at y(1)=1 then find the value of y(1/2)

If (x+1,1)=(3,y-2), find the value of x and y.

Let x+(1)/(x)=2, y+(1)/(y)=-2 and sin^(-1)x+cos^(-1)y=m pi , then the value of m is

22,If y prop x^(4) When x=1000,y=y_(1), then find the value of x so that value of y can be 2y_(1)(1)2000(2)11903)1410(4)4000