Home
Class 14
MATHS
If a+ b+c + d = 4 then the value of ...

If a+ b+c + d = 4 then the value of
`1/((1-a) (1-b) (1-c)) + 1/((1-b) (1-c) (1-d)) + 1/((1-c)(1-d)(1-a)) + 1/((1-d)(1-a) (1-b))` is

A

0

B

1

C

4

D

1+ abcd

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given that \( a + b + c + d = 4 \). The expression is: \[ E = \frac{1}{(1-a)(1-b)(1-c)} + \frac{1}{(1-b)(1-c)(1-d)} + \frac{1}{(1-c)(1-d)(1-a)} + \frac{1}{(1-d)(1-a)(1-b)} \] ### Step 1: Choose values for \( a, b, c, d \) Since \( a + b + c + d = 4 \), we can choose values that satisfy this equation. A simple choice is: - \( a = 0 \) - \( b = 0 \) - \( c = 2 \) - \( d = 2 \) This gives us: \[ 0 + 0 + 2 + 2 = 4 \] ### Step 2: Substitute the values into the expression Now we substitute \( a, b, c, d \) into the expression \( E \): 1. For the first term: \[ (1-a)(1-b)(1-c) = (1-0)(1-0)(1-2) = 1 \cdot 1 \cdot (-1) = -1 \] Thus, the first term becomes: \[ \frac{1}{-1} = -1 \] 2. For the second term: \[ (1-b)(1-c)(1-d) = (1-0)(1-2)(1-2) = 1 \cdot (-1) \cdot (-1) = 1 \] Thus, the second term becomes: \[ \frac{1}{1} = 1 \] 3. For the third term: \[ (1-c)(1-d)(1-a) = (1-2)(1-2)(1-0) = (-1)(-1)(1) = 1 \] Thus, the third term becomes: \[ \frac{1}{1} = 1 \] 4. For the fourth term: \[ (1-d)(1-a)(1-b) = (1-2)(1-0)(1-0) = (-1)(1)(1) = -1 \] Thus, the fourth term becomes: \[ \frac{1}{-1} = -1 \] ### Step 3: Combine the results Now we combine all the terms: \[ E = -1 + 1 + 1 - 1 = 0 \] ### Conclusion Thus, the value of the expression is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b=2c, then the value of (a)/(a-c)+(b)/(b-c) is (1)/(2)(b)1(c)2(d)3

If a,b,c are in H.P., then the value of ((1)/(b)+(1)/(c)-(1)/(a))((1)/(c)+(1)/(a)-(1)/(b)) is

If (a)/(1-a)+(b)/(1-b)+(c)/(1-c)=1. then the value of (1)/(1-a)+(1)/(1-b)+(1)/(1-c) is

If a,b,c are in H.P.tgen the value of ((1)/(b)+(1)/(c)-(1)/(a))((1)/(c)+(1)/(a)-(1)/(b))