Home
Class 14
MATHS
If ax + by =1 and bx + ay = ( 2 ab)/(a ^...

If `ax + by =1 and bx + ay = ( 2 ab)/(a ^(2) + b ^(2))` then` (x ^(2) + y ^(2)) (a ^(2) + b ^(2))` is equal to

A

1

B

2

C

0.5

D

0

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If ax+by=1 and bx+ay=(2ab)/(a^(2)+b^(2)) then (x^(2)+y^(2))(a^(2)+b^(2)) is equal to

{:(ax + by = 1),(bx + ay = ((a + b)^(2))/(a^(2) + b^(2))-1):}

Factorise: ax ^(2) + by^(2) + bx^(2) + ay^(2)

(bx ) /(a) + ( ay ) /( b) = a ^(2) + b ^(2) , x + y = 2ab

2 (ax+by)^(2)-(bx+ay)^(2)

If ax+by=6, bx-ay=2and x^(2)+y^(2)=4 then what is (a^(2)+b^(2)) ?

If bx=ay then show that (x^(2)+y^(2))(a^(2)+b^(2))=(ax+by)^(2)

ax+by=a+b bx+ay=b^2

ax+by=1 bx+ay=2