Home
Class 14
MATHS
If cosx.cosy + sinx.siny = -1 then cosx ...

If cosx.cosy + sinx.siny = -1 then cosx + cosy is

A

`-2`

B

1

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos x \cos y + \sin x \sin y = -1 \), we can use the cosine addition formula. The cosine addition formula states that: \[ \cos(x + y) = \cos x \cos y - \sin x \sin y \] However, we can rearrange the terms in our equation to utilize the cosine addition formula. The given equation can be rewritten as: \[ \cos x \cos y + \sin x \sin y = -1 \] This can be recognized as: \[ \cos(x - y) = -1 \] From the properties of the cosine function, we know that \( \cos \theta = -1 \) when \( \theta = (2n + 1) \pi \) for any integer \( n \). Therefore, we have: \[ x - y = (2n + 1) \pi \] Now, we need to find \( \cos x + \cos y \). We can use the cosine addition formula again, but first, let's express \( \cos x + \cos y \) in terms of \( x - y \): Using the identity for the sum of cosines: \[ \cos x + \cos y = 2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \] We already know that \( x - y \) is an odd multiple of \( \pi \). Therefore, we can express \( \frac{x - y}{2} \) as: \[ \frac{x - y}{2} = \frac{(2n + 1) \pi}{2} = (n + 0.5) \pi \] This means that \( \cos\left(\frac{x - y}{2}\right) = 0 \) for any integer \( n \). Thus, we have: \[ \cos x + \cos y = 2 \cos\left(\frac{x+y}{2}\right) \cdot 0 = 0 \] So, we conclude that: \[ \cos x + \cos y = 0 \] ### Summary of Steps: 1. Start with the equation \( \cos x \cos y + \sin x \sin y = -1 \). 2. Recognize that this can be expressed as \( \cos(x - y) = -1 \). 3. Determine that \( x - y = (2n + 1) \pi \) for some integer \( n \). 4. Use the sum of cosines identity to express \( \cos x + \cos y \). 5. Conclude that \( \cos x + \cos y = 0 \).
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If cos x. cosy+sinx.siny=-1 then cosx+cosy is :

If 2cosx+sinx=1 , then find 7cosx+6sinx

Knowledge Check

  • If 1 + cos x cos y + sin x sin y = 0 , then which of the following is / are true 1. cosx + cosy = 0 2. sinx + siny = 0 3. sinx + cosy = 0 chose the correct option from the code given below

    A
    only 1
    B
    only 2
    C
    only 3
    D
    1 and 2
  • If cosx+cosy+cosz=sinx+siny+sinz=0" then "cos(x-y)=

    A
    0
    B
    `-(1)/(2)`
    C
    2
    D
    1
  • If 0 lt x, y lt 2pi , the number of solutions of the system of equations sinx siny=3//4 and cos x cosy=1//4 is

    A
    0
    B
    1
    C
    2
    D
    infinite
  • Similar Questions

    Explore conceptually related problems

    What is the value of [(sin x + sin y)(sin x - sin y)]//[(cosx + cosy)(cosy- cosx)] ? [(sin x + sin y)(sin x - sin y)]//[(cosx + cosy)(cosy- cosx)] का मान क्या है?

    If cosx + cosy + cosz = 0 = sinx + siny + sinz ,then possible value of cos((x-y)/2) is (A) 4 3 1 2 (B) 4 3 2 1 (C) 3 4 2 1 (D) 3 4 1 2

    In the interval [- pi/ 4,pi/4] , the number of real solutions of the equations abs( [sinx ,cosx , cosx],[cosx , sinx , cosx] , [cosx , cosx , sinx])

    In the interval [- pi/ 4,pi/4] , the number of real solutions of the equations abs( [sinx ,cosx , cosx],[cosx , sinx , cosx] , [cosx , cosx , sinx])

    If sinx+cosy=a and cosx+siny = b , then tan""(x-y)/(2) is equal to :