Home
Class 14
MATHS
The angle of elevation of an aeroplane a...

The angle of elevation of an aeroplane as observed from a point 30 m above the transparent water-sur- face of a lake is `30^(@)` and the angle of depression of the image of the aeroplane in the water of the lake is `60^(@)` . The height of the aeroplane from the water- surface of the lake is:

A

60m

B

45 m

C

50 m

D

75 m

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The angle of elevation of a cloud from a point 10 meters above the surface of a lake is 30^(@) and the angle of depression of its reflection from that point is 60^(@) . Then the height of the could above the lake is

"The angle of elevation of an aeroplane from a point 200m above a lake surface is 45∘ and the angle of depression of its reflection is 75∘ .The height of the aeroplane above the surface of the lake is"

The angle of elevation of a cloud C from a point P, 200 m above a still lake is 30^(@) . If the angle of depression of the image of C in the lake from the point P is 60^(@) , then PC (in m) is equal to :

The angle of elevation of a cloud from a height h above the level of water in a lake is alpha and the angle of depressionof its image in the lake is beta . Find the height of the cloud above the surface of the lake:

The angle of elevation of a stationary cloud from a point 200 m above the lake is 30^(@) and the angle of depression of its reflection in the lake is found to be 60^(@) . Find the height of the cloud .

If the angle of elevation of a cloud from a point 10 metres above a lake is 30^(@) and the angle of depression of its reflection in the lake is 60^(@) . Find the height of the cloud from the surface of lake.

The angle of elevation of a stationary helicopter as seen from a point on the deck of a ship 60m above sea level,is 30^(@) and the angle of depression of its reflection in the water is 60^(@). Find the height of the helicopter above the sea-level.

From a point 12 m above the water level, the angle of elevation of the top of a hill is 60^(@) and the angle of depression of the base of the hill is 30^(@) . What is the height (in m)of the hill?