Home
Class 14
MATHS
The value of 0.5bar6 -0.7bar(23)+0.3bar9...

The value of `0.5bar6 -0.7bar(23)+0.3bar9 xx 0.bar7` is :

A

A) `0.1bar(58)`

B

B) `0.bar(158)`

C

C) `0.bar(154)`

D

D) `0.1bar(54)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(0.5\overline{6} - 0.7\overline{23} + 0.3\overline{9} \times 0.\overline{7}\), we will convert the repeating decimals into fractions and then perform the arithmetic operations step by step. ### Step 1: Convert the repeating decimals into fractions 1. **Convert \(0.5\overline{6}\)**: Let \(x = 0.5\overline{6}\). \[ x = 0.56666\ldots \] Multiply by 10: \[ 10x = 5.6666\ldots \] Subtract the first equation from the second: \[ 10x - x = 5.6666\ldots - 0.56666\ldots \] \[ 9x = 5.1 \implies x = \frac{5.1}{9} = \frac{51}{90} \] 2. **Convert \(0.7\overline{23}\)**: Let \(y = 0.7\overline{23}\). \[ y = 0.7232323\ldots \] Multiply by 1000: \[ 1000y = 723.2323\ldots \] Subtract: \[ 1000y - 10y = 723.2323\ldots - 7.2323\ldots \] \[ 990y = 716 \implies y = \frac{716}{990} = \frac{358}{495} \] 3. **Convert \(0.3\overline{9}\)**: Let \(z = 0.3\overline{9}\). \[ z = 0.39999\ldots \] Multiply by 10: \[ 10z = 3.9999\ldots \] Subtract: \[ 10z - z = 3.9999\ldots - 0.39999\ldots \] \[ 9z = 3.6 \implies z = \frac{3.6}{9} = \frac{4}{10} = \frac{2}{5} \] 4. **Convert \(0.\overline{7}\)**: Let \(w = 0.\overline{7}\). \[ w = 0.77777\ldots \] Multiply by 10: \[ 10w = 7.7777\ldots \] Subtract: \[ 10w - w = 7.7777\ldots - 0.7777\ldots \] \[ 9w = 7 \implies w = \frac{7}{9} \] ### Step 2: Substitute the fractions into the expression Now we substitute the fractions back into the expression: \[ \frac{51}{90} - \frac{358}{495} + \left(\frac{2}{5} \times \frac{7}{9}\right) \] ### Step 3: Calculate \(0.3\overline{9} \times 0.\overline{7}\) Calculate \( \frac{2}{5} \times \frac{7}{9} \): \[ \frac{2 \times 7}{5 \times 9} = \frac{14}{45} \] ### Step 4: Find a common denominator for the entire expression The common denominator for \(90\), \(495\), and \(45\) is \(990\). 1. Convert \( \frac{51}{90} \): \[ \frac{51 \times 11}{90 \times 11} = \frac{561}{990} \] 2. Convert \( \frac{358}{495} \): \[ \frac{358 \times 2}{495 \times 2} = \frac{716}{990} \] 3. Convert \( \frac{14}{45} \): \[ \frac{14 \times 22}{45 \times 22} = \frac{308}{990} \] ### Step 5: Combine the fractions Now we can combine: \[ \frac{561}{990} - \frac{716}{990} + \frac{308}{990} = \frac{561 - 716 + 308}{990} = \frac{153}{990} \] ### Step 6: Simplify the result The fraction \( \frac{153}{990} \) can be simplified by finding the GCD of \(153\) and \(990\), which is \(9\): \[ \frac{153 \div 9}{990 \div 9} = \frac{17}{110} \] ### Final Answer Thus, the final value of the expression is: \[ \frac{17}{110} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 0.5 bar 6 -0.7 bar23+0.3 bar 9xx 0. bar 7 is : 0.5 bar 6 -0.7 bar23+0.3 bar 9xx 0. bar 7 का मान है :

The value of 0.bar(45)+ 0.bar(36) is

The value of 0.bar(57)-0.4bar(32)+0.3bar5 is:

The value of 0.4 bar7 + 0.5 bar 03- 0.3 bar 9xx0. bar 8 is :- 0.4 bar7 +0.5 bar 03- 0.3 bar 9xx0. bar 8 का मान है :

The value of (0.bar(63) + 0.bar(37)) is

The value of 0.bar2 + 0.bar3 + 0.bar(32) is :

Find the value of 2.bar(6)-0.bar(9) .

0.08bar9 xx 100