Home
Class 14
MATHS
ab(a-b)+bc(b-c)+ca(c-a) is equal to...

`ab(a-b)+bc(b-c)+ca(c-a)` is equal to

A

`(a+b)(b-c)(c-a)`

B

`(b-a)(b-c)(c-a)`

C

`(a-b)(b-c)(c-a)`

D

`(a-b)(b+c)(c-a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( ab(a-b) + bc(b-c) + ca(c-a) \), we can follow these steps: ### Step 1: Expand the expression We start by expanding each term in the expression: 1. Expand \( ab(a-b) \): \[ ab(a-b) = a^2b - ab^2 \] 2. Expand \( bc(b-c) \): \[ bc(b-c) = b^2c - bc^2 \] 3. Expand \( ca(c-a) \): \[ ca(c-a) = c^2a - ca^2 \] Now, we can combine all these expanded terms: \[ ab(a-b) + bc(b-c) + ca(c-a) = (a^2b - ab^2) + (b^2c - bc^2) + (c^2a - ca^2) \] ### Step 2: Combine like terms Next, we combine all the terms: \[ = a^2b - ab^2 + b^2c - bc^2 + c^2a - ca^2 \] ### Step 3: Rearranging the terms Now, we rearrange the terms for clarity: \[ = a^2b + b^2c + c^2a - (ab^2 + bc^2 + ca^2) \] ### Step 4: Factor the expression To factor the expression, we can look for patterns. We can group the terms: \[ = a^2b - ab^2 + b^2c - bc^2 + c^2a - ca^2 \] We can factor by grouping: \[ = ab(a-b) + bc(b-c) + ca(c-a) \] ### Step 5: Final factorization The expression can be factored as: \[ = (a-b)(b-c)(c-a) \] Thus, the final result is: \[ = (a-b)(b-c)(c-a) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b+c=8 and ab +bc +ca =12 , then a^(3) +b^(3) +c^(3) -3abc is equal to :

In a Delta ABC,(cos A cos B)/(ab)+(cos B cos C)/(bc)+(cos C cos A)/(ca) is equal to

If ab + bc + ca = 8 and a+b+c = 12 then (a^(2) + b^(2) + c^(2)) is equal to :

If a^(2) + b^(2) + c^(2) + 96 = 8(a + b - 2c) , then sqrt(ab - bc + ca) is equal to :

If a+b+c=8 and ab+bc+ca=20 , then a^(3)+b^(3)+c^(3)-3abc is equal to :