Home
Class 14
MATHS
In DeltaPQR,/Qgt/R PS is the bisector of...

In `DeltaPQR,/_Qgt/_R` PS is the bisector of `/_P` and `PT_|_PQ`. If `/_SPT=28^(@)` and `/_R=23^(@)` then the measure of `/_Q` is

A

`89^(@)`

B

`82^(@)`

C

`79^(@)`

D

`74^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given triangle \( \Delta PQR \) and apply the properties of angles and triangles. ### Step 1: Write down the given information - \( \angle SPT = 28^\circ \) - \( \angle R = 23^\circ \) - \( PS \) is the bisector of \( \angle P \) - \( PT \perp PQ \) (meaning \( PT \) is perpendicular to \( PQ \)) - \( \angle Q > \angle R \) ### Step 2: Understand the implications of the angle bisector Since \( PS \) bisects \( \angle P \), we can denote: - \( \angle QPS = \angle SPR = x \) Thus, we have: \[ \angle P = 2x \] ### Step 3: Analyze triangle \( PTS \) In triangle \( PTS \), we know: - \( \angle SPT = 28^\circ \) - \( PT \perp PQ \) implies \( \angle PTS = 90^\circ \) Using the triangle angle sum property: \[ \angle PTS + \angle SPT + \angle TSP = 180^\circ \] Substituting the known values: \[ 90^\circ + 28^\circ + \angle TSP = 180^\circ \] This simplifies to: \[ \angle TSP = 180^\circ - 118^\circ = 62^\circ \] ### Step 4: Find \( \angle PSR \) Since \( PS \) bisects \( \angle P \), we have: \[ \angle PSR = 180^\circ - \angle TSP = 180^\circ - 62^\circ = 118^\circ \] ### Step 5: Analyze triangle \( PSR \) In triangle \( PSR \): \[ \angle SPR + \angle PSR + \angle R = 180^\circ \] Substituting the known values: \[ \angle SPR + 118^\circ + 23^\circ = 180^\circ \] This simplifies to: \[ \angle SPR + 141^\circ = 180^\circ \] Thus: \[ \angle SPR = 180^\circ - 141^\circ = 39^\circ \] ### Step 6: Relate \( \angle Q \) to the angles found Since \( PS \) bisects \( \angle P \): \[ \angle QPS = \angle SPR = 39^\circ \] Now, we can find \( \angle Q \): \[ \angle Q = 180^\circ - \angle QPS - \angle PSR \] Substituting the known values: \[ \angle Q = 180^\circ - 39^\circ - 62^\circ \] This simplifies to: \[ \angle Q = 180^\circ - 101^\circ = 79^\circ \] ### Final Answer Thus, the measure of \( \angle Q \) is \( 79^\circ \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle PQR, angle Q succ angle R , PS is the bisector of angle P and PT bot QR . If angle SPT = 28^@ and angle R=23^@ , then the measure of angle Q is: त्रिभुज PQR में, angle Q succ angle R , है तथा PS कोण P का समद्विभाजक है और PT bot QR है । यदि angle SPT = 28^@ और angle R= 23^@ है, तो कोण Q का मान क्या है?

In the Figure DeltaPQR PT bot QR at T and T FS is the bisector of angleQPR if anglePQR =78^(@) , and angleTPS=24^(@) then the measure of anglePRQ is.

In the given figure,the bisectors of /_P and /_Q meet at a pooint A.If /_R=110^(@) and /_S=50^(@), find measure of /_PAQ

In Delta PQR , Ps is the bisector of lt P and PT bot QR, then lt TPS is equal to

In DeltaPQR , ray PS is the bisector of /_QPR , Q-S-R . If Qs=4.8cm , SR=3.6cm , find PQ : PR .

In DeltaPQR , ray PS is the bisector of /_QPR . Q-S-R . If QS=4.8 cm, SR=3.6cm then find PQ:PR .

In Figure PS is the bisector of /_QPR and PT perp QR. Show that /_TPS=(1)/(2)(/_Q-/_R) .Figure

In Figure PS is the bisector of /_QPR and PTquad perp QR. Show that /_TPS=(1)/(2)(/_Q-/_R)