Home
Class 14
MATHS
Let x= root(6)(27)- sqrt(6 3/4) and y= (...

Let `x= root(6)(27)- sqrt(6 3/4)` and `y= (sqrt 45+ sqrt 605+ sqrt 245)/(sqrt 80+sqrt 125)`, then the value of `x^2+y^2` is:
मान लीजिये कि `x= root(6)(27)- sqrt(6 3/4)` और `y= (sqrt 45+ sqrt 605+ sqrt 245)/(sqrt 80+sqrt 125)` है, तो `x^2+y^2` का मान ज्ञात करें |

A

`223/36`

B

`227/9`

C

`221/36`

D

`221/9`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)), then find the value of x^(2)+y^(2)

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), then the value of x^(3)+y^(3) is

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), then the value of x^(3)+y^(3) is

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) then the value of x^(2)+xy+y^(2)