Home
Class 14
MATHS
If a+b+c=6, a^3+b^3+c^3-3abc = 342, then...

If a+b+c=6, `a^3+b^3+c^3`-3abc = 342, then what is the value of ab+bc+ca?

A

5

B

`-5`

C

`-7`

D

8

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If a + b + c = 7 and a^3+b^3+c^3-3abc =175 , then what is the value of (ab + bc + ca) ? यदि a + b + c = 7 और a^3+b^3+c^3-3abc =175 , तो (ab + bc + ca) का मान क्या होगा?

If a +b+c=7 and a^(3)+b^(3)+c^(3)-3abc=175 ,then what is the value of ab +bc +ca ?

If a+b+c=7 and a^(3)+b^(3)+c^(3)-3abc=175 , then what is the value of (ab+bc+ca) ?

If a +b + c = 19, ab + bc + ca = 120 then what is the value of a^3 + b^3 + c^3 - 3abc?

If a ^(3) + b ^(3) + c ^(3) - 3abc = 250 and a + b + c = 10, then what is the value of ab + bc + ca ?

If a+b+c = 11, ab+bc+ca = 3 and abc = -135, then what is the value of a^3+b^3+c^3 ? यदि a+b+c = 11, ab+bc+ca = 3 तथा abc = -135 है, तो a^3+b^3+c^3 का मान क्या होगा ?

If a^(3)+b^(3)+c^(3)-3abc=126 , a+b+c=6 then the value of (ab+bc+ca) is :