Home
Class 14
MATHS
Let x=((sqrt(1875))/(sqrt(3888))div(sqrt...

Let `x=((sqrt(1875))/(sqrt(3888))div(sqrt(1200))/(sqrt(768)))xx(sqrt(175))/(sqrt(1792))`. Then `sqrt(x)` is equal to :

A

(A) `4/9`

B

(B) `5/9`

C

(C) `5/12`

D

(D) `7/12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression for \( x \) and then find \( \sqrt{x} \). Let's break it down step by step. ### Step 1: Rewrite the expression for \( x \) The expression for \( x \) is given as: \[ x = \frac{\sqrt{1875}}{\sqrt{3888}} \div \frac{\sqrt{1200}}{\sqrt{768}} \times \frac{\sqrt{175}}{\sqrt{1792}} \] This can be rewritten as: \[ x = \frac{\sqrt{1875} \times \sqrt{768} \times \sqrt{175}}{\sqrt{3888} \times \sqrt{1200}} \] ### Step 2: Factor the square roots Now, we will factor each number under the square roots into their prime factors: - \( 1875 = 3 \times 5^4 \) - \( 3888 = 2^4 \times 3^5 \) - \( 1200 = 2^4 \times 3^1 \times 5^2 \) - \( 768 = 2^8 \times 3^1 \) - \( 175 = 5^2 \times 7^1 \) - \( 1792 = 2^8 \times 7^1 \) ### Step 3: Calculate the square roots Now we can calculate the square roots: - \( \sqrt{1875} = \sqrt{3 \times 5^4} = 5^2 \sqrt{3} = 25\sqrt{3} \) - \( \sqrt{3888} = \sqrt{2^4 \times 3^5} = 2^2 \times 3^{2.5} = 4 \times 9\sqrt{3} = 36\sqrt{3} \) - \( \sqrt{1200} = \sqrt{2^4 \times 3^1 \times 5^2} = 2^2 \times 5 \times \sqrt{3} = 4 \times 5\sqrt{3} = 20\sqrt{3} \) - \( \sqrt{768} = \sqrt{2^8 \times 3^1} = 2^4 \times \sqrt{3} = 16\sqrt{3} \) - \( \sqrt{175} = \sqrt{5^2 \times 7} = 5\sqrt{7} \) - \( \sqrt{1792} = \sqrt{2^8 \times 7} = 2^4 \sqrt{7} = 16\sqrt{7} \) ### Step 4: Substitute back into the expression for \( x \) Now substituting these back into the expression for \( x \): \[ x = \frac{25\sqrt{3} \times 16\sqrt{3} \times 5\sqrt{7}}{36\sqrt{3} \times 20\sqrt{3}} \] ### Step 5: Simplify the expression Now we simplify the expression: The numerator becomes: \[ 25 \times 16 \times 5 \times 3 \times \sqrt{7} = 2000\sqrt{7} \] The denominator becomes: \[ 36 \times 20 \times 3 = 2160 \] So we have: \[ x = \frac{2000\sqrt{7}}{2160} \] ### Step 6: Simplify the fraction Now we can simplify \( \frac{2000}{2160} \): \[ \frac{2000}{2160} = \frac{25}{27} \] Thus, we have: \[ x = \frac{25\sqrt{7}}{27} \] ### Step 7: Find \( \sqrt{x} \) Now we find \( \sqrt{x} \): \[ \sqrt{x} = \sqrt{\frac{25\sqrt{7}}{27}} = \frac{5\sqrt[4]{7}}{\sqrt{27}} = \frac{5\sqrt[4]{7}}{3\sqrt{3}} \] ### Final Answer Thus, the final answer is: \[ \sqrt{x} = \frac{5}{12} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let x =( sqrt1875/sqrt3888 div sqrt1200/ sqrt768)xx sqrt175/sqrt1792 . Then sqrtx is equal to: माना x =( sqrt1875/sqrt3888 div sqrt1200/ sqrt768)xx sqrt175/sqrt1792 तो sqrtx का मान ज्ञात कीजिए?

sqrt(6) xx sqrt(8) is equal to

int(a^(sqrt(x)))/(sqrt(x))dx is equal to

3sqrt(1331) xx 3sqrt(216) + 3sqrt(729) + 3sqrt(64) is equal to

Evaluate ((x+sqrt(3))(x-sqrt(5))+(x+sqrt(5))(x-sqrt(3)))/((x-sqrt(3))(x-sqrt(5)))

int(1+x+sqrt(x+x^(2)))/(sqrt(x)+sqrt(1+x))dx is equal to

3sqrt(512)div 4sqrt(16)div sqrt(576)=?