Home
Class 14
MATHS
The value of (cos^6 theta+sin^6 theta+ 3...

The value of `(cos^6 theta+sin^6 theta+ 3sin^2 theta cos^2 theta)/(cosec theta sec theta(sin theta+cos theta-1)(sin theta+cos theta+1))` is :
`(cos^6 theta+sin^6 theta+ 3sin^2 theta cos^2 theta)/(cosec theta sec theta(sin theta+cos theta-1)(sin theta+cos theta+1))` का मान ज्ञात कीजिए?

A

`1/2`

B

1

C

3

D

2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

((sin theta+cos theta)^(2)-1)/(sin theta*cos theta)

(sin theta-cos theta+1)/(sin theta+cos theta-1)=(1+sin theta)/(cos theta)

(cosec theta-sin theta)(sec theta-cos theta)=sin theta. cos theta

What is the value of sin^6 theta + cos^6 theta + 3sin^2 theta cos^2 theta ?

(sin theta+cos theta)(1-sin theta cos theta)=sin^3 theta+cos^3 theta

(cos^(2)theta)/(sin theta)-cosec theta+sin theta=0

Simplify: (sin8 theta cos theta-sin6 theta cos3 theta)/(cos2 theta cos theta-sin3 theta sin4 theta)

(cos theta cosec theta-sin theta sec theta)/(cos theta+sin theta)=cosec theta-sec theta

3. sin^(3)theta+cos^(3)theta=(sin theta+cos theta)(1-sin theta cos theta)

(cos theta)/(1-sin theta)=(1+cos theta+sin theta)/(1+cos theta-sin theta)