Home
Class 14
MATHS
cosA(secA-cosA)(cotA+tanA)=?...

`cosA(secA-cosA)(cotA+tanA)=?`

A

`tanA`

B

`SecA`

C

`sinA`

D

`cotA`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos A (\sec A - \cos A)(\cot A + \tan A) \), we will break it down step by step. ### Step 1: Substitute the Trigonometric Identities The first step is to substitute the trigonometric identities for secant, cotangent, and tangent: - \( \sec A = \frac{1}{\cos A} \) - \( \cot A = \frac{\cos A}{\sin A} \) - \( \tan A = \frac{\sin A}{\cos A} \) So, we rewrite the expression: \[ \cos A \left(\frac{1}{\cos A} - \cos A\right) \left(\frac{\cos A}{\sin A} + \frac{\sin A}{\cos A}\right) \] ### Step 2: Simplify the First Parenthesis Now, simplify the first parenthesis: \[ \frac{1}{\cos A} - \cos A = \frac{1 - \cos^2 A}{\cos A} = \frac{\sin^2 A}{\cos A} \] (using the identity \( \sin^2 A + \cos^2 A = 1 \)) ### Step 3: Simplify the Second Parenthesis Next, simplify the second parenthesis: \[ \frac{\cos A}{\sin A} + \frac{\sin A}{\cos A} = \frac{\cos^2 A + \sin^2 A}{\sin A \cos A} = \frac{1}{\sin A \cos A} \] (using the identity \( \cos^2 A + \sin^2 A = 1 \)) ### Step 4: Combine the Results Now, substitute back into the expression: \[ \cos A \cdot \frac{\sin^2 A}{\cos A} \cdot \frac{1}{\sin A \cos A} \] ### Step 5: Simplify the Expression This simplifies to: \[ \frac{\sin^2 A}{\sin A \cos A} = \frac{\sin A}{\cos A} = \tan A \] ### Final Result Thus, the final result is: \[ \cos A (\sec A - \cos A)(\cot A + \tan A) = \tan A \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(cosecA - sinA)^2+(sec A-cosA)^2- (cotA - tanA)^2 is equal to : (cosecA - sinA)^2+(sec A-cosA)^2- (cotA - tanA)^2 का मान किसके बराबर है?

(cosecA-sinA)(secA-cosA)(tanA+cotA) = __________.

Prove that : (sinA-cosA)(cotA +tanA)=secA-"cosec"A

secA(1-sinA)(secA+tanA)=1

If sinA=-4/5 and pi lt A lt (3pi)/2 , find the value of (cosecA+cotA)/(secA-tanA)

The simplified value of (SecA-cosA)^(2)+("cosec" A-sinA)^(2)-(cotA-tanA)^(2) is

Prove that (cotA- cosA)/(cotA+ cosA) = (cosecA -1)/(cosecA+1)

Porve that : (cosecA-sinA)(secA-cosA) =(1)/(tanA+cotA)

(1+cotA+tanA)(sinA-cosA)=(secA)/(cosec^2A)-(cosecA)/(sec^2A)

Prove that : (tanA)/(1-cotA)+(cotA)/(1-tanA)=1+secA" cosec"A