Home
Class 14
MATHS
(sin theta[(1-tantheta)tantheta+sec^(2)t...

`(sin theta[(1-tantheta)tantheta+sec^(2)theta])/((1-sin theta)tantheta(1+tantheta)(sec theta+tantheta))` is equal to :

A

`sin thetacostheta`

B

`-1`

C

`"cosec"thetasectheta`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\sin \theta \left[ (1 - \tan \theta) \tan \theta + \sec^2 \theta \right]}{(1 - \sin \theta) \tan \theta (1 + \tan \theta)(\sec \theta + \tan \theta)} \] we will simplify it step by step. ### Step 1: Rewrite the expression Start by rewriting the expression clearly: \[ \frac{\sin \theta \left[ (1 - \tan \theta) \tan \theta + \sec^2 \theta \right]}{(1 - \sin \theta) \tan \theta (1 + \tan \theta)(\sec \theta + \tan \theta)} \] ### Step 2: Expand the numerator Expand the numerator: \[ (1 - \tan \theta) \tan \theta + \sec^2 \theta = \tan \theta - \tan^2 \theta + \sec^2 \theta \] Using the identity \(\sec^2 \theta = 1 + \tan^2 \theta\), we can substitute: \[ \tan \theta - \tan^2 \theta + (1 + \tan^2 \theta) = \tan \theta + 1 \] Thus, the numerator becomes: \[ \sin \theta (\tan \theta + 1) \] ### Step 3: Rewrite the denominator Now, let's rewrite the denominator: \[ (1 - \sin \theta) \tan \theta (1 + \tan \theta)(\sec \theta + \tan \theta) \] We know \(\sec \theta = \frac{1}{\cos \theta}\) and \(\tan \theta = \frac{\sin \theta}{\cos \theta}\), so: \[ \sec \theta + \tan \theta = \frac{1 + \sin \theta}{\cos \theta} \] Substituting this into the denominator gives: \[ (1 - \sin \theta) \tan \theta (1 + \tan \theta) \cdot \frac{1 + \sin \theta}{\cos \theta} \] ### Step 4: Substitute \(\tan \theta\) Substituting \(\tan \theta = \frac{\sin \theta}{\cos \theta}\) into the denominator: \[ (1 - \sin \theta) \cdot \frac{\sin \theta}{\cos \theta} \cdot \left(1 + \frac{\sin \theta}{\cos \theta}\right) \cdot \frac{1 + \sin \theta}{\cos \theta} \] This simplifies to: \[ (1 - \sin \theta) \cdot \frac{\sin \theta}{\cos \theta} \cdot \frac{\cos \theta + \sin \theta}{\cos \theta} \cdot \frac{1 + \sin \theta}{\cos \theta} \] Thus, the denominator becomes: \[ (1 - \sin \theta) \cdot \frac{\sin \theta (1 + \sin \theta)(\cos + \sin)}{\cos^3 \theta} \] ### Step 5: Simplify the entire expression Now we can combine the numerator and denominator: \[ \frac{\sin \theta (\tan \theta + 1)}{(1 - \sin \theta) \cdot \frac{\sin \theta (1 + \sin \theta)(\cos + \sin)}{\cos^3 \theta}} \] Cancelling \(\sin \theta\) from the numerator and denominator gives: \[ \frac{\tan \theta + 1}{(1 - \sin \theta) \cdot \frac{(1 + \sin \theta)(\cos + \sin)}{\cos^3 \theta}} \] ### Step 6: Final simplification The expression simplifies down to: \[ \frac{\tan \theta + 1}{(1 - \sin \theta)(1 + \sin \theta)} \cdot \cos^3 \theta \] Using the identity \(1 - \sin^2 \theta = \cos^2 \theta\), we have: \[ \frac{\tan \theta + 1}{\cos^2 \theta} \cdot \cos^3 \theta = \tan \theta + 1 \] ### Final Result Thus, the final simplified expression is: \[ 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

frac(sintheta [(1-tantheta) tan theta+sec^2 theta])((1-sintheta) tantheta(1+tan theta) (sec theta+tantheta)) =?

tantheta+tan2theta=tan3theta

(2sinthetatantheta(1-tantheta)+2sinthetasec^(2)theta)/((1+tantheta)^(2))=?

int(sectheta)/(sec theta+tantheta)d theta=

((cottheta)/(cottheta-cot3theta)+(tantheta)/(tantheta-tan3theta))=?

(tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+tantheta+cottheta=sectheta"cosec"theta+1

tantheta+tan2theta=tanthetatan2theta=1

tantheta . Cot theta =

sec^2theta/tantheta=?