Home
Class 14
MATHS
If x=sec57^(@), then cot^(2)33^(@)+sin...

If `x=sec57^(@)`, then
`cot^(2)33^(@)+sin^(2)57^(@)+sin^(2)33^(@)+cosec^(2)57^(@)cos^(2)33^(@)+sec^(2)33^(@)sin^(2)57^(@)` is equal to:

A

`2x^(2)+1`

B

`x^(2)+1`

C

`(1)/(x^(2)+1)`

D

`x^(2)+2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression given in the question, we will follow a systematic approach. Given: \[ x = \sec 57^\circ \] We need to evaluate: \[ \cot^2 33^\circ + \sin^2 57^\circ + \sin^2 33^\circ + \csc^2 57^\circ \cos^2 33^\circ + \sec^2 33^\circ \sin^2 57^\circ \] ### Step 1: Use Trigonometric Identities We know the following trigonometric identities: 1. \( \sin^2 \theta + \cos^2 \theta = 1 \) 2. \( \csc^2 \theta = 1 + \cot^2 \theta \) 3. \( \sec^2 \theta = 1 + \tan^2 \theta \) ### Step 2: Substitute Values We can start substituting the known values: - \( \sin^2 57^\circ + \cos^2 57^\circ = 1 \) - \( \sin^2 33^\circ + \cos^2 33^\circ = 1 \) ### Step 3: Rewrite the Expression Now, rewrite the expression using the identities: 1. Replace \( \csc^2 57^\circ \) with \( 1 + \cot^2 57^\circ \) 2. Replace \( \sec^2 33^\circ \) with \( 1 + \tan^2 33^\circ \) Thus, the expression becomes: \[ \cot^2 33^\circ + \sin^2 57^\circ + \sin^2 33^\circ + (1 + \cot^2 57^\circ) \cos^2 33^\circ + (1 + \tan^2 33^\circ) \sin^2 57^\circ \] ### Step 4: Simplify the Expression Now, we can simplify the expression step by step: - Combine like terms. - Use \( \sin^2 57^\circ + \cos^2 57^\circ = 1 \) and \( \sin^2 33^\circ + \cos^2 33^\circ = 1 \). ### Step 5: Final Calculation After simplification, we will arrive at: \[ \text{Final Expression} = 3 + \cot^2 33^\circ \] ### Step 6: Substitute for \( x \) Since \( x = \sec 57^\circ \), we know: \[ \sec^2 57^\circ = 1 + \tan^2 57^\circ \] Using the relationship between secant and tangent, we can relate \( \cot^2 33^\circ \) to \( x \). ### Conclusion Thus, the final result can be expressed in terms of \( x \): \[ \text{Final Answer} = x^2 + 2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(cos^(2)33^(@)-cos^(2)57^(@))/(sin21^(@)-cos21^(@))=

cos57^(@)+sin27^(@)=

Evaluate "cosec"^(2)57^(@)-tan^(2)33^(@) .

sin ^ (2) 27 ^ (@) + sin ^ (2) 87 ^ (@) + sin ^ (2) 33 ^ (@) =

The expression (1+sin22^(@)sin33^(@)sin35^(@))/(cos^(2)22^(@)+cos^(2)33^(@)+cos^(2)35^(@)) simplifies to

The value of sin3^(@)sin27^(@)sin33^(@)sin57^(@)sin63^(@)sin87^(@) can be equal to -

The exact value of cos^(2)57^(@)+cos^(2)63^(@)+cos57^(@)cos63^(@) is

sin^2 33^@+cos^2 57^@=

the value of (cos81^(@))/(sin3^(@)sin57^(@)sin63^(@))=