Home
Class 14
MATHS
The value of (7+3sqrt""5)/(3+sqrt""5)-(7...

The value of `(7+3sqrt""5)/(3+sqrt""5)-(7-3sqrt""5)/(3-sqrt""5)` lies between:

A

1.5 and 2

B

3 and 3.5

C

2.5 and 3

D

2 and 2.5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((7 + 3\sqrt{5})/(3 + \sqrt{5}) - (7 - 3\sqrt{5})/(3 - \sqrt{5})\), we will follow these steps: ### Step 1: Simplify Each Fraction We start by simplifying each fraction separately. For the first fraction: \[ \frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} \] We can multiply the numerator and denominator by the conjugate of the denominator, which is \(3 - \sqrt{5}\): \[ = \frac{(7 + 3\sqrt{5})(3 - \sqrt{5})}{(3 + \sqrt{5})(3 - \sqrt{5})} \] For the second fraction: \[ \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}} \] Similarly, we multiply the numerator and denominator by the conjugate of the denominator, which is \(3 + \sqrt{5}\): \[ = \frac{(7 - 3\sqrt{5})(3 + \sqrt{5})}{(3 - \sqrt{5})(3 + \sqrt{5})} \] ### Step 2: Calculate the Denominators The denominators for both fractions can be simplified using the difference of squares: \[ (3 + \sqrt{5})(3 - \sqrt{5}) = 3^2 - (\sqrt{5})^2 = 9 - 5 = 4 \] ### Step 3: Expand the Numerators Now we expand the numerators: For the first fraction: \[ (7 + 3\sqrt{5})(3 - \sqrt{5}) = 21 - 7\sqrt{5} + 9\sqrt{5} - 15 = 6 + 2\sqrt{5} \] For the second fraction: \[ (7 - 3\sqrt{5})(3 + \sqrt{5}) = 21 + 7\sqrt{5} - 9\sqrt{5} - 15 = 6 - 2\sqrt{5} \] ### Step 4: Combine the Fractions Now we can combine the two fractions: \[ \frac{6 + 2\sqrt{5}}{4} - \frac{6 - 2\sqrt{5}}{4} = \frac{(6 + 2\sqrt{5}) - (6 - 2\sqrt{5})}{4} \] This simplifies to: \[ \frac{6 + 2\sqrt{5} - 6 + 2\sqrt{5}}{4} = \frac{4\sqrt{5}}{4} = \sqrt{5} \] ### Step 5: Determine the Range of \(\sqrt{5}\) We know that: \[ \sqrt{5} \approx 2.236 \] Thus, \(\sqrt{5}\) lies between 2 and 2.5. ### Final Answer The value of the expression lies between \(2\) and \(2.5\).
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (7+3 sqrt5)/(3+sqrt5)-(7-3 sqrt5)/(3-sqrt5) lies between: (7+3 sqrt5)/(3+sqrt5)-(7-3 sqrt5)/(3-sqrt5) का मान किसके बीच में होगा

The value of frac (7+3sqrt 5)(3 + sqrt 5)+frac(7 - 3sqrt 5)(3 - sqrt 5) lies between: frac (7 + 3 sqrt 5) (3 + sqrt 5) + frac (7 - 3 sqrt 5) (3 - sqrt 5) का मान के बीच है:

(7+3sqrt5)/(7-3sqrt5)=

Find the value of a and b if (7+3sqrt(5))/(3+sqrt(5))-(7-3sqrt(5))/(3-sqrt(5)) =a + bsqrt(5)

Simplify (3+sqrt5)/(sqrt7-sqrt3)

(2sqrt(7))/(sqrt(5)-sqrt(3))

find the value sqrt(5)/(sqrt(7)-sqrt(3))

The square root of (7 + 3sqrt5) (7 - 3sqrt5) is :

7/(sqrt5-sqrt3) =

(sqrt(5)+sqrt(3))(sqrt(7)-sqrt(3))