Home
Class 14
MATHS
If a+b+c=7 and a^(3)+b^(3)+c^(3)-3abc=17...

If `a+b+c=7 and a^(3)+b^(3)+c^(3)-3abc=175`, then what is the value of `(ab+bc+ca)`?

A

8

B

7

C

6

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the provided equations and manipulate them to find the value of \( ab + bc + ca \). ### Step 1: Write down the given equations We have two equations: 1. \( a + b + c = 7 \) 2. \( a^3 + b^3 + c^3 - 3abc = 175 \) ### Step 2: Use the identity for the sum of cubes We can use the identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] Substituting \( a + b + c = 7 \) into the equation gives us: \[ a^3 + b^3 + c^3 - 3abc = 7(a^2 + b^2 + c^2 - ab - ac - bc) \] ### Step 3: Substitute the second equation From the second equation, we know: \[ 175 = 7(a^2 + b^2 + c^2 - ab - ac - bc) \] Dividing both sides by 7: \[ a^2 + b^2 + c^2 - ab - ac - bc = 25 \] ### Step 4: Use the square of the sum of variables We know that: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \] Substituting \( a + b + c = 7 \): \[ 7^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \] This simplifies to: \[ 49 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \] ### Step 5: Express \( a^2 + b^2 + c^2 \) From our previous result, we can express \( a^2 + b^2 + c^2 \) as: \[ a^2 + b^2 + c^2 = 25 + ab + ac + bc \] ### Step 6: Substitute \( a^2 + b^2 + c^2 \) into the square equation Now substitute \( a^2 + b^2 + c^2 \) into the equation: \[ 49 = (25 + ab + ac + bc) + 2(ab + ac + bc) \] This simplifies to: \[ 49 = 25 + 3(ab + ac + bc) \] ### Step 7: Solve for \( ab + ac + bc \) Rearranging gives: \[ 49 - 25 = 3(ab + ac + bc) \] \[ 24 = 3(ab + ac + bc) \] Dividing both sides by 3: \[ ab + ac + bc = 8 \] ### Final Answer Thus, the value of \( ab + ac + bc \) is \( \boxed{8} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b+c=6, a^3+b^3+c^3 -3abc = 342, then what is the value of ab+bc+ca?

If a^(3)+b^(3)+c^(3)-3abc=126 , a+b+c=6 then the value of (ab+bc+ca) is :

If a ^(3) + b ^(3) + c ^(3) - 3abc = 250 and a + b + c = 10, then what is the value of ab + bc + ca ?

If a+b+c = 11, ab+bc+ca = 3 and abc = -135, then what is the value of a^3+b^3+c^3 ? यदि a+b+c = 11, ab+bc+ca = 3 तथा abc = -135 है, तो a^3+b^3+c^3 का मान क्या होगा ?

If a +b + c = 19, ab + bc + ca = 120 then what is the value of a^3 + b^3 + c^3 - 3abc?

If a + b + c = 6 and a^3+b^3+c^3-3abc =0 ,then ab + bc + ca is equal to: यदि a + b + c = 6 है और a^3+b^3+c^3-3abc है, तो ab + bc + ca का मान क्या होगा ?