Home
Class 14
MATHS
The value of 0.bar(57)-0.4bar(32)+0.3bar...

The value of `0.bar(57)-0.4bar(32)+0.3bar5` is:

A

`0.4bar(98)`

B

`0.bar(498)`

C

`0.4sqrt(94)`

D

`0.bar(494)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \(0.\overline{57} - 0.\overline{32} + 0.\overline{35}\), we will first convert each repeating decimal into a fraction. ### Step 1: Convert \(0.\overline{57}\) to a fraction Let \(x = 0.\overline{57}\). Then, multiplying both sides by 100 (to shift the decimal point two places to the right): \[ 100x = 57.\overline{57} \] Now, subtract the original equation from this new equation: \[ 100x - x = 57.\overline{57} - 0.\overline{57} \] \[ 99x = 57 \] \[ x = \frac{57}{99} \] Now simplify \(\frac{57}{99}\): \[ x = \frac{19}{33} \] ### Step 2: Convert \(0.\overline{32}\) to a fraction Let \(y = 0.\overline{32}\). Then, multiplying both sides by 100: \[ 100y = 32.\overline{32} \] Subtracting the original equation: \[ 100y - y = 32.\overline{32} - 0.\overline{32} \] \[ 99y = 32 \] \[ y = \frac{32}{99} \] ### Step 3: Convert \(0.\overline{35}\) to a fraction Let \(z = 0.\overline{35}\). Then, multiplying both sides by 100: \[ 100z = 35.\overline{35} \] Subtracting the original equation: \[ 100z - z = 35.\overline{35} - 0.\overline{35} \] \[ 99z = 35 \] \[ z = \frac{35}{99} \] ### Step 4: Substitute back into the original expression Now we substitute these fractions back into the expression: \[ 0.\overline{57} - 0.\overline{32} + 0.\overline{35} = \frac{19}{33} - \frac{32}{99} + \frac{35}{99} \] ### Step 5: Find a common denominator The common denominator for \(33\) and \(99\) is \(99\). We need to convert \(\frac{19}{33}\) to have the same denominator: \[ \frac{19}{33} = \frac{19 \times 3}{33 \times 3} = \frac{57}{99} \] ### Step 6: Combine the fractions Now we can combine: \[ \frac{57}{99} - \frac{32}{99} + \frac{35}{99} = \frac{57 - 32 + 35}{99} = \frac{60}{99} \] ### Step 7: Simplify the fraction Now simplify \(\frac{60}{99}\): \[ \frac{60}{99} = \frac{20}{33} \] ### Final Answer Thus, the value of \(0.\overline{57} - 0.\overline{32} + 0.\overline{35}\) is: \[ \frac{20}{33} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 0.bar(09)=

The value of 0.bar 57-0.4 bar 32+0.3 bar 5 is: 0.bar 57-0.4 bar 32+0.3 bar 5 का मान क्या होगा:

The value of 0.bar(45)+ 0.bar(36) is

Evaluate : 2.bar(5)-0.bar(35)

Find the value of 2.bar(6)-0.bar(9) .

The value of (0.bar(63) + 0.bar(37)) is

The value of 0.bar(3) + 0.bar(6) + 0. bar( 7 ) + 0. bar( 8 ) in fraction will be

The value of 0.5bar6 -0.7bar(23)+0.3bar9 xx 0.bar7 is :