Home
Class 14
MATHS
If (x+y)^(3)+8(x-y)^(3)=(3x+Ay)(3x^(2)+B...

If `(x+y)^(3)+8(x-y)^(3)=(3x+Ay)(3x^(2)+Bxy+Cy^(2))`, then the value of `A+B+C` is:

A

3

B

2

C

4

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( (x+y)^{3} + 8(x-y)^{3} = (3x + Ay)(3x^{2} + Bxy + Cy^{2}) \), we will follow these steps: ### Step 1: Expand the Left-Hand Side We start by expanding the left-hand side of the equation: \[ (x+y)^{3} + 8(x-y)^{3} \] Using the binomial expansion, we have: \[ (x+y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3} \] And for \( (x-y)^{3} \): \[ (x-y)^{3} = x^{3} - 3x^{2}y + 3xy^{2} - y^{3} \] Now, substituting this into our expression: \[ 8(x-y)^{3} = 8(x^{3} - 3x^{2}y + 3xy^{2} - y^{3}) = 8x^{3} - 24x^{2}y + 24xy^{2} - 8y^{3} \] Adding these two expansions together: \[ (x+y)^{3} + 8(x-y)^{3} = (x^{3} + 3x^{2}y + 3xy^{2} + y^{3}) + (8x^{3} - 24x^{2}y + 24xy^{2} - 8y^{3}) \] Combining like terms: \[ = (1 + 8)x^{3} + (3 - 24)x^{2}y + (3 + 24)xy^{2} + (1 - 8)y^{3} \] \[ = 9x^{3} - 21x^{2}y + 27xy^{2} - 7y^{3} \] ### Step 2: Expand the Right-Hand Side Now we expand the right-hand side: \[ (3x + Ay)(3x^{2} + Bxy + Cy^{2}) \] Using the distributive property: \[ = 3x(3x^{2}) + 3x(Bxy) + 3x(Cy^{2}) + Ay(3x^{2}) + Ay(Bxy) + Ay(Cy^{2}) \] This simplifies to: \[ = 9x^{3} + 3Bx^{2}y + 3Cx^{2}y + ABxy^{2} + ACy^{3} \] Combining like terms gives us: \[ = 9x^{3} + (3B + 3C)x^{2}y + ABxy^{2} + ACy^{3} \] ### Step 3: Equate Coefficients Now we equate the coefficients from both sides: From \( 9x^{3} \): - Coefficient of \( x^{3} \): \( 9 = 9 \) (no new information) From \( x^{2}y \): - Coefficient of \( x^{2}y \): \( -21 = 3B + 3C \) From \( xy^{2} \): - Coefficient of \( xy^{2} \): \( 27 = AB \) From \( y^{3} \): - Coefficient of \( y^{3} \): \( -7 = AC \) ### Step 4: Solve the System of Equations We have the following equations: 1. \( -21 = 3B + 3C \) (Divide by 3) → \( B + C = -7 \) (Equation 1) 2. \( 27 = AB \) (Equation 2) 3. \( -7 = AC \) (Equation 3) From Equation 1, we can express \( C \) in terms of \( B \): \[ C = -7 - B \] Substituting \( C \) into Equation 3: \[ -7 = A(-7 - B) \implies -7 = -7A - AB \] Rearranging gives: \[ 7A + AB = 7 \implies A(B + 7) = 7 \implies A = \frac{7}{B + 7} \] Substituting \( A \) into Equation 2: \[ 27 = \frac{7}{B + 7}B \implies 27(B + 7) = 7B \implies 27B + 189 = 7B \implies 20B = -189 \implies B = -\frac{189}{20} \] Now substituting \( B \) back to find \( C \): \[ C = -7 - \left(-\frac{189}{20}\right) = -\frac{140}{20} + \frac{189}{20} = \frac{49}{20} \] Now substituting \( B \) into \( A(B + 7) = 7 \): \[ A\left(-\frac{189}{20} + 7\right) = 7 \implies A\left(-\frac{189}{20} + \frac{140}{20}\right) = 7 \implies A\left(-\frac{49}{20}\right) = 7 \implies A = -\frac{140}{49} = -\frac{20}{7} \] ### Step 5: Calculate \( A + B + C \) Now we can find \( A + B + C \): \[ A + B + C = -\frac{20}{7} - \frac{189}{20} + \frac{49}{20} \] Finding a common denominator (140): \[ = -\frac{400}{140} - \frac{1323}{140} + \frac{343}{140} = -\frac{400 + 1323 - 343}{140} = -\frac{1380}{140} = -\frac{69}{7} \] ### Final Answer Thus, the value of \( A + B + C \) is: \[ \boxed{-\frac{69}{7}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 8(x + y)^3 - (x − y)^3 = (x + 3y) (Ax^2 + Bxy + Cy^2) , then the value of (A - B - C) is: यदि 8(x + y)^3 - (x − y)^3 = (x + 3y) (Ax^2 + Bxy + Cy^2) , है तो (A - B - C) का मान हैः

If 8(x+y)^3-(x-y)^3=(x + 3y) (Ax^2+Cy^2+Bxy) , then the value of (A-B-C) is : यदि 8(x+y)^3-(x-y)^3=(x + 3y) (Ax^2+Cy^2+Bxy) है, तो (A-B-C) का मान ज्ञात करें |

If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2) , then the valueof (2A + B - C) is : यदि (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2) है, तो (2A + B - C) का मान क्या होगा ?

If (8x^3+27y^3)div (2x+3y)= (Ax^2+Bxy+Cy^2) , then the valueof (5A + 4B + 3C) is : यदि (8x^3+27y^3)div (2x+3y)= (Ax^2+Bxy+Cy^2) है, तो (5A + 4B + 3C) का मान क्या होगा ?

If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy , then the value of (A + B + C ) is: यदि [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy है, तो (A + B + C) का मान ज्ञात करें|