Home
Class 14
MATHS
((1+tantheta+sectheta)(1+cottheta-cosect...

`((1+tantheta+sectheta)(1+cottheta-cosectheta))/((sectheta+tantheta)(1-sintheta))` is equal to:

A

`2cosectheta`

B

`cosectheta`

C

`sectheta`

D

`2sectheta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{(1+\tan\theta+\sec\theta)(1+\cot\theta-\csc\theta)}{(\sec\theta+\tan\theta)(1-\sin\theta)}\), we will simplify it step by step. ### Step 1: Substitute Trigonometric Values We will substitute \(\theta = 30^\circ\) into the expression. The trigonometric values for \(30^\circ\) are: - \(\tan 30^\circ = \frac{1}{\sqrt{3}}\) - \(\sec 30^\circ = \frac{2}{\sqrt{3}}\) - \(\cot 30^\circ = \sqrt{3}\) - \(\csc 30^\circ = 2\) - \(\sin 30^\circ = \frac{1}{2}\) ### Step 2: Substitute Values into the Expression Now we substitute these values into the expression: \[ 1 + \tan 30^\circ + \sec 30^\circ = 1 + \frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}} = 1 + \frac{3}{\sqrt{3}} = 1 + \sqrt{3} \] \[ 1 + \cot 30^\circ - \csc 30^\circ = 1 + \sqrt{3} - 2 = \sqrt{3} - 1 \] \[ \sec 30^\circ + \tan 30^\circ = \frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3} \] \[ 1 - \sin 30^\circ = 1 - \frac{1}{2} = \frac{1}{2} \] ### Step 3: Substitute into the Main Expression Now substituting these results into the main expression: \[ \frac{(1 + \sqrt{3})(\sqrt{3} - 1)}{(\sqrt{3})(\frac{1}{2})} \] ### Step 4: Simplify the Numerator Now we simplify the numerator: \[ (1 + \sqrt{3})(\sqrt{3} - 1) = 1 \cdot \sqrt{3} - 1 + \sqrt{3} \cdot \sqrt{3} - \sqrt{3} = \sqrt{3} - 1 + 3 - \sqrt{3} = 2 \] ### Step 5: Simplify the Denominator Now simplifying the denominator: \[ \sqrt{3} \cdot \frac{1}{2} = \frac{\sqrt{3}}{2} \] ### Step 6: Final Simplification Now we can simplify the entire expression: \[ \frac{2}{\frac{\sqrt{3}}{2}} = 2 \cdot \frac{2}{\sqrt{3}} = \frac{4}{\sqrt{3}} \] ### Step 7: Rationalize the Denominator To rationalize the denominator: \[ \frac{4}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{4\sqrt{3}}{3} \] ### Final Answer Thus, the final answer is: \[ \frac{4\sqrt{3}}{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(tantheta-sectheta)^2

(tantheta+sectheta-1)/(tantheta-sectheta+1)=

(tantheta+sectheta-1)/(tantheta-sectheta+1)=

(1+cottheta-cosectheta)(1+tantheta+sectheta)=?

(tantheta)/(1-cottheta)+(cottheta)/(1-tantheta) is equal to -

((cosectheta-1)(cosectheta+1))/((sectheta-1)(sectheta+1))

(cosectheta-sintheta)(sectheta-costheta)(tantheta+cottheta)=?

Pove that- sectheta-tantheta=1/(sectheta+tantheta)=(1-sintheta)/costheta

(csctheta-sintheta")(sectheta-costheta)(tantheta+cottheta)=

If (sectheta+tantheta)/(sectheta-tantheta)=(5)/(3) , then sintheta is equal to