Home
Class 14
MATHS
The value of (sintheta+costheta-1)/(sint...

The value of `(sintheta+costheta-1)/(sintheta-costheta+1)xxsqrt((1+sintheta)/(1-sintheta))` is:

A

A) 1

B

B) `-2`

C

C) 2

D

D) `-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sin \theta + \cos \theta - 1}{\sin \theta - \cos \theta + 1} \times \sqrt{\frac{1 + \sin \theta}{1 - \sin \theta}}\), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{\sin \theta + \cos \theta - 1}{\sin \theta - \cos \theta + 1} \times \sqrt{\frac{1 + \sin \theta}{1 - \sin \theta}} \] ### Step 2: Divide by \(\cos \theta\) We divide both the numerator and denominator of the first fraction by \(\cos \theta\): \[ \frac{\frac{\sin \theta}{\cos \theta} + 1 - \frac{1}{\cos \theta}}{\frac{\sin \theta}{\cos \theta} - 1 + \frac{1}{\cos \theta}} = \frac{\tan \theta + 1 - \sec \theta}{\tan \theta - 1 + \sec \theta} \] ### Step 3: Simplify the square root Next, we simplify the square root: \[ \sqrt{\frac{1 + \sin \theta}{1 - \sin \theta}} = \frac{\sqrt{(1 + \sin \theta)(1 + \sin \theta)}}{\sqrt{(1 - \sin \theta)(1 + \sin \theta)}} = \frac{1 + \sin \theta}{\sqrt{1 - \sin^2 \theta}} = \frac{1 + \sin \theta}{\cos \theta} \] ### Step 4: Combine the two parts Now we combine the two parts: \[ \frac{\tan \theta + 1 - \sec \theta}{\tan \theta - 1 + \sec \theta} \times \frac{1 + \sin \theta}{\cos \theta} \] ### Step 5: Substitute \(\tan \theta\) and \(\sec \theta\) Substituting \(\tan \theta = \frac{\sin \theta}{\cos \theta}\) and \(\sec \theta = \frac{1}{\cos \theta}\): \[ \frac{\frac{\sin \theta}{\cos \theta} + 1 - \frac{1}{\cos \theta}}{\frac{\sin \theta}{\cos \theta} - 1 + \frac{1}{\cos \theta}} \times \frac{1 + \sin \theta}{\cos \theta} \] ### Step 6: Simplify the numerator and denominator The numerator becomes: \[ \sin \theta + \cos \theta - 1 \] And the denominator becomes: \[ \sin \theta - \cos \theta + 1 \] ### Step 7: Cancel common terms Now we can cancel out the common terms: \[ \frac{\sin \theta + \cos \theta - 1}{\sin \theta - \cos \theta + 1} \times \frac{1 + \sin \theta}{\cos \theta} \] After simplification, we find that the expression simplifies to 1. ### Final Answer Thus, the value of the expression is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1+costheta)/(sintheta)=?

Evaluate : ( sintheta + costheta ) ( sintheta - costheta )

The value of (sintheta)/(1+costheta)+(sintheta)/(1-costheta) is :

If sintheta+costheta=x then sintheta-costheta=?

((1-sintheta+costheta)^(2))/((1+costheta)(1-sintheta))=?

Evaluate costheta/(1+sintheta)

prove that- (sintheta+1-costheta)/(costheta-1+sintheta)=(1+sintheta)/costheta

If sintheta-costheta=1 ,then find sintheta.costheta

Evaluate- |[costheta,sintheta],[sintheta,costheta]|