Home
Class 14
MATHS
If x^3 + y^3 + z^3 = 3(1 + xyz), P = y +...

If `x^3 + y^3 + z^3 = 3(1 + xyz)`, P = y + z - x, Q = z + x - y and R = x + y - z, then what is the value of `P^3 + Q^3 + R^3- 3PQR`?

A

9

B

8

C

12

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( P^3 + Q^3 + R^3 - 3PQR \) given the equation \( x^3 + y^3 + z^3 = 3(1 + xyz) \) and the definitions of \( P, Q, \) and \( R \). ### Step-by-Step Solution: 1. **Understanding the Given Equation**: We start with the equation: \[ x^3 + y^3 + z^3 = 3(1 + xyz) \] This equation holds true if \( x, y, z \) are the roots of a cubic polynomial. 2. **Substituting Values**: To simplify the calculations, we can set \( z = 0 \) and \( y = 0 \). This gives us: \[ x^3 = 3(1 + 0) \implies x^3 = 3 \] Thus, we have \( x = \sqrt[3]{3} \). 3. **Calculating \( P, Q, R \)**: Now we can calculate \( P, Q, R \): - \( P = y + z - x = 0 + 0 - \sqrt[3]{3} = -\sqrt[3]{3} \) - \( Q = z + x - y = 0 + \sqrt[3]{3} - 0 = \sqrt[3]{3} \) - \( R = x + y - z = \sqrt[3]{3} + 0 - 0 = \sqrt[3]{3} \) 4. **Calculating \( P^3, Q^3, R^3 \)**: Now we compute \( P^3, Q^3, R^3 \): - \( P^3 = (-\sqrt[3]{3})^3 = -3 \) - \( Q^3 = (\sqrt[3]{3})^3 = 3 \) - \( R^3 = (\sqrt[3]{3})^3 = 3 \) 5. **Calculating \( PQR \)**: Next, we calculate \( PQR \): \[ PQR = (-\sqrt[3]{3}) \cdot (\sqrt[3]{3}) \cdot (\sqrt[3]{3}) = -3 \] 6. **Putting it All Together**: Now we substitute these values into the expression \( P^3 + Q^3 + R^3 - 3PQR \): \[ P^3 + Q^3 + R^3 - 3PQR = -3 + 3 + 3 - 3(-3) \] Simplifying this: \[ = -3 + 3 + 3 + 9 = 12 \] ### Final Answer: Thus, the value of \( P^3 + Q^3 + R^3 - 3PQR \) is \( 12 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If x + y + z = 6 and x^2 + y^2 + z^2= 20 then the value of x^3 + y^3 + z^3 - 3xyz is

if x = 332 , y= 333 , z, =335 then the value of x^3 + y^3 +z^3- 3 xyz is