Home
Class 14
MATHS
What is the value of [(tan 5 theta + tan...

What is the value of `[(tan 5 theta + tan 3theta)//4 cos 4theta (tan 5theta - tan 3theta)]`?

A

`sin 2 theta`

B

`cos 2theta`

C

`tan 4theta`

D

`cot 2theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\tan 5\theta + \tan 3\theta}{4 \cos 4\theta (\tan 5\theta - \tan 3\theta)}\), we will follow these steps: ### Step 1: Rewrite the Tangent Functions Using the definition of tangent, we can express \(\tan\) in terms of sine and cosine: \[ \tan 5\theta = \frac{\sin 5\theta}{\cos 5\theta}, \quad \tan 3\theta = \frac{\sin 3\theta}{\cos 3\theta} \] ### Step 2: Substitute into the Expression Substituting these definitions into our expression gives: \[ \frac{\frac{\sin 5\theta}{\cos 5\theta} + \frac{\sin 3\theta}{\cos 3\theta}}{4 \cos 4\theta \left(\frac{\sin 5\theta}{\cos 5\theta} - \frac{\sin 3\theta}{\cos 3\theta}\right)} \] ### Step 3: Combine the Numerator The numerator can be combined as follows: \[ \frac{\sin 5\theta \cos 3\theta + \sin 3\theta \cos 5\theta}{\cos 5\theta \cos 3\theta} \] This uses the identity for the sum of tangents. ### Step 4: Combine the Denominator The denominator can be simplified: \[ \frac{\sin 5\theta \cos 3\theta - \sin 3\theta \cos 5\theta}{\cos 5\theta \cos 3\theta} \] This uses the identity for the difference of tangents. ### Step 5: Substitute Back into the Expression Now substituting back into our expression gives: \[ \frac{\sin 5\theta \cos 3\theta + \sin 3\theta \cos 5\theta}{\cos 5\theta \cos 3\theta} \cdot \frac{\cos 5\theta \cos 3\theta}{4 \cos 4\theta (\sin 5\theta \cos 3\theta - \sin 3\theta \cos 5\theta)} \] ### Step 6: Simplify the Expression The \(\cos 5\theta \cos 3\theta\) cancels out: \[ \frac{\sin 5\theta \cos 3\theta + \sin 3\theta \cos 5\theta}{4 \cos 4\theta (\sin 5\theta \cos 3\theta - \sin 3\theta \cos 5\theta)} \] ### Step 7: Use Sine Addition and Subtraction Formulas Using the sine addition and subtraction formulas: \[ \sin(5\theta + 3\theta) = \sin 8\theta, \quad \sin(5\theta - 3\theta) = \sin 2\theta \] Thus, we can rewrite the expression as: \[ \frac{\sin 8\theta}{4 \cos 4\theta \sin 2\theta} \] ### Step 8: Apply the Double Angle Formula Using the double angle formula for sine: \[ \sin 8\theta = 2 \sin 4\theta \cos 4\theta \] Substituting this in gives: \[ \frac{2 \sin 4\theta \cos 4\theta}{4 \cos 4\theta \sin 2\theta} \] ### Step 9: Cancel Common Terms Canceling \(\cos 4\theta\) from numerator and denominator: \[ \frac{2 \sin 4\theta}{4 \sin 2\theta} = \frac{\sin 4\theta}{2 \sin 2\theta} \] ### Step 10: Use the Double Angle Formula Again Using the double angle formula again: \[ \sin 4\theta = 2 \sin 2\theta \cos 2\theta \] Substituting this gives: \[ \frac{2 \sin 2\theta \cos 2\theta}{2 \sin 2\theta} \] ### Step 11: Final Simplification Canceling \(2 \sin 2\theta\) gives: \[ \cos 2\theta \] ### Final Answer Thus, the value of the expression is: \[ \cos 2\theta \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of [(tan5 theta+ tan 3 theta)//4cos4 theta(tan5 theta- tan3 theta)] ? [(tan5 theta+ tan 3 theta)//4cos4 theta(tan5 theta- tan3 theta)] का मान क्या है?

What is the value of [((tan5theta+tan3theta))/(4cos4theta(tan5theta-tan3theta))] ?

Solve tan theta + tan 2 theta + tan theta * tan 2 theta * tan 3 theta=1

Solve: tan5theta=tan3theta

If tan theta=(pi)/(7) then find the value of (tan theta.tan2 theta+tan2 theta tan4 theta+tan4 theta*tan theta) is....

If: tan theta + tan 2theta = tan 3theta , then: theta =

(tan5 theta+tan3 theta)/(tan5 theta-tan3 theta)=4cos2 theta cos4 theta