Home
Class 14
MATHS
What is the value of cos [(180 - theta)/...

What is the value of `cos [(180 - theta)//2] cos [(180 - 9theta)//2] + sin [(180 - 3theta)//2] sin [(180 - 13theta)//2]`?

A

`sin 2theta sin 4theta`

B

`cos 2theta cos 6theta`

C

`sin 2theta sin 6theta`

D

`cos 2theta cos 4theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos \left( \frac{180 - \theta}{2} \right) \cos \left( \frac{180 - 9\theta}{2} \right) + \sin \left( \frac{180 - 3\theta}{2} \right) \sin \left( \frac{180 - 13\theta}{2} \right) \), we can use trigonometric identities to simplify it step by step. ### Step 1: Simplify using trigonometric identities We start by using the identities: - \( \cos(180^\circ - x) = -\cos(x) \) - \( \sin(180^\circ - x) = \sin(x) \) Thus, we can rewrite the expression: \[ \cos \left( \frac{180 - \theta}{2} \right) = \cos \left( 90 - \frac{\theta}{2} \right) = \sin \left( \frac{\theta}{2} \right) \] \[ \cos \left( \frac{180 - 9\theta}{2} \right) = \cos \left( 90 - \frac{9\theta}{2} \right) = \sin \left( \frac{9\theta}{2} \right) \] \[ \sin \left( \frac{180 - 3\theta}{2} \right) = \sin \left( 90 - \frac{3\theta}{2} \right) = \cos \left( \frac{3\theta}{2} \right) \] \[ \sin \left( \frac{180 - 13\theta}{2} \right) = \sin \left( 90 - \frac{13\theta}{2} \right) = \cos \left( \frac{13\theta}{2} \right) \] Substituting these into the expression gives: \[ \sin \left( \frac{\theta}{2} \right) \sin \left( \frac{9\theta}{2} \right) + \cos \left( \frac{3\theta}{2} \right) \cos \left( \frac{13\theta}{2} \right) \] ### Step 2: Use the product-to-sum identities Next, we can apply the product-to-sum identities: \[ \sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)] \] \[ \cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)] \] Applying these identities: 1. For \( \sin \left( \frac{\theta}{2} \right) \sin \left( \frac{9\theta}{2} \right) \): \[ \sin \left( \frac{\theta}{2} \right) \sin \left( \frac{9\theta}{2} \right) = \frac{1}{2} \left[ \cos \left( \frac{\theta}{2} - \frac{9\theta}{2} \right) - \cos \left( \frac{\theta}{2} + \frac{9\theta}{2} \right) \right] = \frac{1}{2} \left[ \cos \left( -4\theta \right) - \cos \left( 5\theta \right) \right] = \frac{1}{2} \left[ \cos(4\theta) - \cos(5\theta) \right] \] 2. For \( \cos \left( \frac{3\theta}{2} \right) \cos \left( \frac{13\theta}{2} \right) \): \[ \cos \left( \frac{3\theta}{2} \right) \cos \left( \frac{13\theta}{2} \right) = \frac{1}{2} \left[ \cos \left( \frac{3\theta}{2} - \frac{13\theta}{2} \right) + \cos \left( \frac{3\theta}{2} + \frac{13\theta}{2} \right) \right] = \frac{1}{2} \left[ \cos \left( -5\theta \right) + \cos \left( 8\theta \right) \right] = \frac{1}{2} \left[ \cos(5\theta) + \cos(8\theta) \right] \] ### Step 3: Combine the results Now, we combine the two results: \[ \frac{1}{2} \left[ \cos(4\theta) - \cos(5\theta) \right] + \frac{1}{2} \left[ \cos(5\theta) + \cos(8\theta) \right] \] This simplifies to: \[ \frac{1}{2} \left[ \cos(4\theta) + \cos(8\theta) \right] \] ### Conclusion Thus, the final value of the original expression is: \[ \frac{1}{2} \left[ \cos(4\theta) + \cos(8\theta) \right] \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of cos[(180-theta)//2] cos[(180-9 theta)//2] + sin[180- 3 theta)//2] sin[180 - 13 theta)//2] ? cos[(180-theta)//2] cos[(180-9 theta)//2] + sin[180- 3 theta)//2] sin[180 - 13 theta)//2] का मान क्या है?

What is the value of sin (180-theta)sin (90- theta)+[cot(90- theta)// 1+tan^2 theta] ? sin (180-theta)sin (90- theta)+[cot(90- theta)// 1+tan^2 theta] का मान क्या है?

What is the value of (tan (90^@-theta) sec (180^@-theta)sin(-theta))/(sin (180^@+theta) cot (360^@-theta) "cosec"(90^@-theta)) ?

The value of cot(180+theta)cot(90-theta) is:

What is the value of [sin (90 - A)+ cos (180-2A)]//[cos (90 - 2A) +sin (180 - A)] ? [sin (90 - A)+ cos (180-2A)]//[cos (90 - 2A) +sin (180 - A)] का मान क्या है?

What is the value of [sin(90-A)+cos(180-2A)]//[cos(90-2A)+sin(180-A)]?

cos (2 theta) cos ((theta) / (2)) - cos (3 theta) cos ((9 theta) / (2)) = sin (5 theta) sin ((5 theta) / (2))

What is the maximum value of sin3 theta cos 2 theta + cos 3 theta sin 2 theta ?

What is the value of sin^6 theta + cos^6 theta + 3sin^2 theta cos^2 theta ?