Home
Class 14
MATHS
What is the value of [tan^2 (90 - theta)...

What is the value of `[tan^2 (90 - theta) - sin^2 (90 - theta)] cosec^2 (90 - theta) cot^2 (90 - theta)`?

A

0

B

1

C

-1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \([tan^2 (90 - \theta) - sin^2 (90 - \theta)] \cdot cosec^2 (90 - \theta) \cdot cot^2 (90 - \theta)\), we can follow these steps: ### Step 1: Use Trigonometric Identities We know the following trigonometric identities: - \(tan(90 - \theta) = cot(\theta)\) - \(sin(90 - \theta) = cos(\theta)\) - \(cosec(90 - \theta) = sec(\theta)\) - \(cot(90 - \theta) = tan(\theta)\) ### Step 2: Substitute the Identities Using the identities, we can rewrite the expression as follows: \[ tan^2(90 - \theta) = cot^2(\theta) \] \[ sin^2(90 - \theta) = cos^2(\theta) \] \[ cosec^2(90 - \theta) = sec^2(\theta) \] \[ cot^2(90 - \theta) = tan^2(\theta) \] Thus, the expression becomes: \[ [cot^2(\theta) - cos^2(\theta)] \cdot sec^2(\theta) \cdot tan^2(\theta) \] ### Step 3: Simplify the Expression Now we can simplify the expression: \[ cot^2(\theta) = \frac{cos^2(\theta)}{sin^2(\theta)} \] So, \[ cot^2(\theta) - cos^2(\theta) = \frac{cos^2(\theta)}{sin^2(\theta)} - cos^2(\theta) \] To combine these fractions, we can express \(cos^2(\theta)\) with a common denominator: \[ = \frac{cos^2(\theta) - cos^2(\theta) \cdot sin^2(\theta)}{sin^2(\theta)} = \frac{cos^2(\theta)(1 - sin^2(\theta))}{sin^2(\theta)} \] Using the identity \(1 - sin^2(\theta) = cos^2(\theta)\), we get: \[ = \frac{cos^4(\theta)}{sin^2(\theta)} \] ### Step 4: Substitute Back into the Expression Now substitute this back into the expression: \[ \frac{cos^4(\theta)}{sin^2(\theta)} \cdot sec^2(\theta) \cdot tan^2(\theta) \] We know that: \[ sec^2(\theta) = \frac{1}{cos^2(\theta)} \quad \text{and} \quad tan^2(\theta) = \frac{sin^2(\theta)}{cos^2(\theta)} \] Substituting these in: \[ = \frac{cos^4(\theta)}{sin^2(\theta)} \cdot \frac{1}{cos^2(\theta)} \cdot \frac{sin^2(\theta)}{cos^2(\theta)} \] ### Step 5: Simplify Further Now simplifying: \[ = \frac{cos^4(\theta) \cdot sin^2(\theta)}{sin^2(\theta) \cdot cos^4(\theta)} = 1 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of [tan^2 (90- theta)-sec^2 (90 - theta)] tan^2 (90- theta) cot^2 (90 -theta) ?

What is the value of [1 - tan (90-theta) + sec (90 -theta)]//[tan (90 - theta)+ sec (90- theta) + 1] ? [1 - tan (90-theta) + sec (90 -theta)]//[tan (90 - theta)+ sec (90- theta) + 1] का मान क्या है?

What is the value of (1)/( sin^(4) (90 - theta)) + (1)/([cos ^(2) (90 - theta)] - 1) ?

What is the value of sin (180-theta)sin (90- theta)+[cot(90- theta)// 1+tan^2 theta] ? sin (180-theta)sin (90- theta)+[cot(90- theta)// 1+tan^2 theta] का मान क्या है?

tan^(2)(90^(@) - theta) - cosec^(2) theta =

What is the value of [1-tan(90-theta)+sec(90-theta)]//[tan(90-theta)+sec(90-theta)+1] ?

What is the value of (tan (90^@-theta) sec (180^@-theta)sin(-theta))/(sin (180^@+theta) cot (360^@-theta) "cosec"(90^@-theta)) ?

What is the value of ([tan(90-theta)+sec(90-theta)-1])/([tan(90-theta)-sec(90-theta)+1]) ?

What is the value of [1-tan(90^(@)-theta)]^(2)*[cos^(2)(90^(@)-theta) -1] ?

sin theta cos(90^@ -theta) +cos theta sin(90^@ -theta) = ?