Home
Class 14
MATHS
If N= 0.369369369369.. and M= 0.53153153...

If N= 0.369369369369.. and M= 0.531531531531…, then what is the value of (1/N) + (1/M)?

A

11100/2419

B

111/100

C

1897/3162

D

2419/11100

Text Solution

AI Generated Solution

The correct Answer is:
To solve for the value of \( \frac{1}{N} + \frac{1}{M} \) where \( N = 0.369369369... \) and \( M = 0.531531531... \), we can follow these steps: ### Step 1: Convert N and M to fractions 1. **Convert \( N \) to a fraction:** - Let \( N = 0.369369369... \) - This can be expressed as \( N = 0.369 + 0.000369369369... \) - Let \( x = 0.369369369... \) - Then, \( 1000x = 369.369369369... \) - Subtracting these, we get: \[ 1000x - x = 369.369369369... - 0.369369369... \] \[ 999x = 369 \] \[ x = \frac{369}{999} \] - Simplifying \( \frac{369}{999} \): \[ \frac{369 \div 9}{999 \div 9} = \frac{41}{111} \] - Thus, \( N = \frac{41}{111} \). 2. **Convert \( M \) to a fraction:** - Let \( M = 0.531531531... \) - Similarly, let \( y = 0.531531531... \) - Then, \( 1000y = 531.531531531... \) - Subtracting these, we get: \[ 1000y - y = 531.531531531... - 0.531531531... \] \[ 999y = 531 \] \[ y = \frac{531}{999} \] - Simplifying \( \frac{531}{999} \): \[ \frac{531 \div 9}{999 \div 9} = \frac{59}{111} \] - Thus, \( M = \frac{59}{111} \). ### Step 2: Calculate \( \frac{1}{N} + \frac{1}{M} \) 3. **Calculate \( \frac{1}{N} \) and \( \frac{1}{M} \):** - \( \frac{1}{N} = \frac{111}{41} \) - \( \frac{1}{M} = \frac{111}{59} \) 4. **Add \( \frac{1}{N} + \frac{1}{M} \):** - To add these fractions, we need a common denominator: \[ \frac{1}{N} + \frac{1}{M} = \frac{111}{41} + \frac{111}{59} \] - The common denominator is \( 41 \times 59 \): \[ = \frac{111 \times 59}{41 \times 59} + \frac{111 \times 41}{59 \times 41} \] \[ = \frac{111 \times 59 + 111 \times 41}{41 \times 59} \] \[ = \frac{111(59 + 41)}{41 \times 59} \] \[ = \frac{111 \times 100}{41 \times 59} \] 5. **Final calculation:** - \( 41 \times 59 = 2419 \) - Thus, the final result is: \[ \frac{11100}{2419} \] ### Final Answer: The value of \( \frac{1}{N} + \frac{1}{M} = \frac{11100}{2419} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If N = 0.369369369 ... and M = 0.531531531531 ..., then what is the value of (1/N) + (1/M) ? यदि N = 0.369369369... और M = 0.531531531531...,है, (1/N) + (1/M) तो का मान क्या है?

If m and n are positive integers such that m^(n) = 1331 , then what is the value of ( m-1)^(n-1) ?

If (a^m)^n=a^m.a^n then find the value of m(n-1)-(n-1)

If m=[{:(1,0),(0,1):}] and n=[{:(0,1),(-1,0):}] , then what is the value of the determinant of m cos theta - n sin theta ?

If m=[[1,00,1]] and n=[[0,1-1,0]], then what m cos theta-n sin theta

What is the value of tan^(-1)((m)/(n))-tan^(-1)((m-n)/(m+n))?

If m and n are integers , then what is the value of int_(0)^(pi)" sin mxsinnx dx " , if m ne n ?