Home
Class 14
MATHS
If A= (1)/(1 xx 2) + (1)/(1 xx 4) + (1)/...

If `A= (1)/(1 xx 2) + (1)/(1 xx 4) + (1)/(2 xx 3) + (1)/(4 xx 7) + (1)/(3 xx 4) + (1)/(7 xx 10)` …..upto 20 terms, then what is the value of A?

A

379/308

B

171/140

C

379/310

D

420/341

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum \( A \) given by: \[ A = \frac{1}{1 \times 2} + \frac{1}{1 \times 4} + \frac{1}{2 \times 3} + \frac{1}{4 \times 7} + \frac{1}{3 \times 4} + \frac{1}{7 \times 10} + \ldots \text{ (up to 20 terms)} \] ### Step 1: Identify Patterns in the Series The series consists of two distinct patterns: 1. The first pattern is of the form \( \frac{1}{n(n+1)} \). 2. The second pattern appears to be of the form \( \frac{1}{(3n-2)(3n+1)} \). ### Step 2: Break Down the Series We can separate the series into two parts: - The first part includes terms of the form \( \frac{1}{n(n+1)} \). - The second part includes terms of the form \( \frac{1}{(3n-2)(3n+1)} \). ### Step 3: Calculate the First Pattern For the first pattern, we have: \[ \sum_{n=1}^{10} \frac{1}{n(n+1)} = \sum_{n=1}^{10} \left( \frac{1}{n} - \frac{1}{n+1} \right) \] This is a telescoping series, which simplifies to: \[ 1 - \frac{1}{11} = \frac{10}{11} \] ### Step 4: Calculate the Second Pattern For the second pattern, we have: \[ \sum_{n=1}^{10} \frac{1}{(3n-2)(3n+1)} \] Using partial fractions, we can express: \[ \frac{1}{(3n-2)(3n+1)} = \frac{A}{3n-2} + \frac{B}{3n+1} \] Solving for \( A \) and \( B \), we find: \[ A = \frac{1}{3}, \quad B = -\frac{1}{3} \] Thus, we can rewrite the sum as: \[ \sum_{n=1}^{10} \left( \frac{1}{3(3n-2)} - \frac{1}{3(3n+1)} \right) \] This also forms a telescoping series: \[ \frac{1}{3} \left( \frac{1}{1} - \frac{1}{31} \right) = \frac{1}{3} \left( 1 - \frac{1}{31} \right) = \frac{1}{3} \cdot \frac{30}{31} = \frac{10}{31} \] ### Step 5: Combine the Results Now, we can combine both parts: \[ A = \frac{10}{11} + \frac{10}{31} \] To add these fractions, we find a common denominator: \[ \text{LCM of } 11 \text{ and } 31 = 341 \] Thus, \[ A = \frac{10 \times 31}{341} + \frac{10 \times 11}{341} = \frac{310 + 110}{341} = \frac{420}{341} \] ### Final Answer The value of \( A \) is: \[ \boxed{\frac{420}{341}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If A= 1/(1xx2)+1/(1xx4)+1/(2xx3)+1/(4xx7)+ 1/(3xx4)+1/(7xx10) ...... upto 20 terms, then what is the value of A? यदि 1/(1xx2)+1/(1xx4)+1/(2xx3)+1/(4xx7)+ 1/(3xx4)+1/(7xx10).....20 पदों तक हो, तो A का मान क्या है?

1 (4)/(5) xx 2 (2)/(3) xx 3 (1)/(3) xx (1)/(4) =

(1/4 xx 2/7)- ( 5/(14) xx 2/3)

If 1/(1 xx 2) + 1/(2 xx 3) + 1/(3 xx 4) + ……….. + 1/(n(n+1)) = 99/100 then what is the value of n?

The value of (1)/(1xx4)+(1)/(4xx7)+(1)/(7xx10)+…(1)/(16xx19) is

[(1)/(1xx2)+(1)/(2xx3)+(1)/(3xx4)+,+(1)/(99xx100)]=

(5)/(6) -: (6)/(7) xx ? - (8)/(9) -: 1 (2)/(5) -: (3)/(4) xx 3 (1)/(3) = 2(7)/(9)