Home
Class 14
MATHS
If x= (a//b) + (b//a), y= (b//c) + (c//b...

If `x= (a//b) + (b//a), y= (b//c) + (c//b) and z= (c//a) + (a//c)`, then what is the value of `xyz - x^(2)- y^(2)- z^(2)` ?

A

`-4`

B

2

C

`-1`

D

`-6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( xyz - x^2 - y^2 - z^2 \) given the definitions of \( x, y, \) and \( z \). ### Step 1: Define the variables We have: \[ x = \frac{a}{b} + \frac{b}{a} \] \[ y = \frac{b}{c} + \frac{c}{b} \] \[ z = \frac{c}{a} + \frac{a}{c} \] ### Step 2: Simplify each variable Using the identity \( \frac{m}{n} + \frac{n}{m} = \frac{m^2 + n^2}{mn} \), we can rewrite \( x, y, \) and \( z \): \[ x = \frac{a^2 + b^2}{ab} \] \[ y = \frac{b^2 + c^2}{bc} \] \[ z = \frac{c^2 + a^2}{ca} \] ### Step 3: Calculate \( xyz \) Now, we can calculate \( xyz \): \[ xyz = \left( \frac{a^2 + b^2}{ab} \right) \left( \frac{b^2 + c^2}{bc} \right) \left( \frac{c^2 + a^2}{ca} \right) \] This simplifies to: \[ xyz = \frac{(a^2 + b^2)(b^2 + c^2)(c^2 + a^2)}{(abc)^2} \] ### Step 4: Calculate \( x^2, y^2, z^2 \) Next, we calculate \( x^2, y^2, \) and \( z^2 \): \[ x^2 = \left( \frac{a^2 + b^2}{ab} \right)^2 = \frac{(a^2 + b^2)^2}{a^2b^2} \] \[ y^2 = \left( \frac{b^2 + c^2}{bc} \right)^2 = \frac{(b^2 + c^2)^2}{b^2c^2} \] \[ z^2 = \left( \frac{c^2 + a^2}{ca} \right)^2 = \frac{(c^2 + a^2)^2}{c^2a^2} \] ### Step 5: Combine the squares Now we need to combine \( x^2, y^2, z^2 \): \[ x^2 + y^2 + z^2 = \frac{(a^2 + b^2)^2}{a^2b^2} + \frac{(b^2 + c^2)^2}{b^2c^2} + \frac{(c^2 + a^2)^2}{c^2a^2} \] ### Step 6: Evaluate the expression \( xyz - x^2 - y^2 - z^2 \) Finally, we need to evaluate: \[ xyz - (x^2 + y^2 + z^2) \] This will involve substituting the expressions we derived for \( xyz \) and \( x^2 + y^2 + z^2 \) and simplifying. ### Conclusion After substituting and simplifying, we will arrive at a numerical answer. The options provided in the question suggest that the answer will be one of the integers given.
Promotional Banner

Similar Questions

Explore conceptually related problems

If a^x=b,b^y=c,c^z=a then the value of xyz is:

If a^(x)=b,b^(y)=c and c^(z)=a then find the value of xyz

If x=(a-b)/(a+b), y=(b-c)/(b+c) and z=(c-a)/(c+a) , find the value of ((1+x)(1+y)(1+z))/((1-x)(1-y)(1-z))

If a^(x)=b,b^(y)=c,c^(z)=a, then find the value of xyz.