Home
Class 14
MATHS
If 3sin x+4 cos x=2, then the value of 3...

If 3sin x+4 cos x=2, then the value of 3 cos x -4 sin x is equal to:

A

21

B

`sqrt(21)`

C

`sqrt(23)`

D

`sqrt(29)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(3 \cos x - 4 \sin x\) given that \(3 \sin x + 4 \cos x = 2\). ### Step-by-Step Solution: 1. **Given Equation**: Start with the equation provided in the problem: \[ 3 \sin x + 4 \cos x = 2 \tag{1} \] 2. **Square Both Sides**: We will square both sides of equation (1): \[ (3 \sin x + 4 \cos x)^2 = 2^2 \] Expanding the left side: \[ 9 \sin^2 x + 24 \sin x \cos x + 16 \cos^2 x = 4 \tag{2} \] 3. **Use Pythagorean Identity**: We know that \(\sin^2 x + \cos^2 x = 1\). We can rewrite equation (2) using this identity: \[ 9 \sin^2 x + 16 \cos^2 x = 9(1 - \cos^2 x) + 16 \cos^2 x \] Simplifying this gives: \[ 9 - 9 \cos^2 x + 16 \cos^2 x = 4 \] Which simplifies to: \[ 9 + 7 \cos^2 x = 4 \] 4. **Rearranging**: Rearranging the equation gives: \[ 7 \cos^2 x = 4 - 9 \] \[ 7 \cos^2 x = -5 \] This indicates that we made an error in our calculations. Let's go back to equation (2) and simplify correctly. 5. **Correctly Simplifying**: Let's go back to equation (2): \[ 9 \sin^2 x + 16 \cos^2 x + 24 \sin x \cos x = 4 \] Using \(\sin^2 x + \cos^2 x = 1\): \[ 9(1 - \cos^2 x) + 16 \cos^2 x + 24 \sin x \cos x = 4 \] Simplifying gives: \[ 9 - 9 \cos^2 x + 16 \cos^2 x + 24 \sin x \cos x = 4 \] \[ 9 + 7 \cos^2 x + 24 \sin x \cos x = 4 \] Rearranging gives: \[ 7 \cos^2 x + 24 \sin x \cos x = 4 - 9 \] \[ 7 \cos^2 x + 24 \sin x \cos x = -5 \] This is incorrect. 6. **Finding \(3 \cos x - 4 \sin x\)**: Instead, we can use a different approach. We can express \(3 \cos x - 4 \sin x\) as: \[ 3 \cos x - 4 \sin x = k \] Squaring both sides gives: \[ (3 \cos x - 4 \sin x)^2 = k^2 \] Expanding gives: \[ 9 \cos^2 x - 24 \sin x \cos x + 16 \sin^2 x = k^2 \] 7. **Combine Equations**: Now we have two equations: - From (1): \(9 \sin^2 x + 16 \cos^2 x + 24 \sin x \cos x = 4\) - From the squared expression: \(9 \cos^2 x + 16 \sin^2 x - 24 \sin x \cos x = k^2\) 8. **Adding the Two Equations**: Adding these equations allows us to eliminate the mixed term: \[ 9 \sin^2 x + 16 \cos^2 x + 24 \sin x \cos x + 9 \cos^2 x + 16 \sin^2 x - 24 \sin x \cos x = 4 + k^2 \] Simplifying gives: \[ 25 = 4 + k^2 \] Thus: \[ k^2 = 25 - 4 = 21 \] Therefore: \[ k = \sqrt{21} \] ### Final Answer: The value of \(3 \cos x - 4 \sin x\) is \(\sqrt{21}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (sin x-cos x)/(sin^(3)x) is equal to :

sSIf x in(0,(pi)/(4)) and cos x sin x=(4)/(3), then the numerical value of cos x-sin x is equal to

If 3cos x+4cos y=5, then the maximum value of 3sin x+4sin y is

If sin^(4)x+cos^(4)y+2=4sin x cos y then the value of sin x+cos y is equal to

If 3 sin x+ 4 cos x =5 then 4 sin x -3 cos x is equal to

if 3sin x+4cos x=5, then 4sin x-3cos x

If tanx = 3/2 , then the value of (3 sin x + 2 cos x)/(3 sin x - 2cos x) is:

If tan2x=(3)/(4) then the value of 4cos4x+3 sin 4x