Home
Class 14
MATHS
If sqrtx+(1)/(sqrtx)=3, then the value o...

If `sqrtx+(1)/(sqrtx)=3`, then the value of `x^3+(1)/(x^3)` is:

A

322

B

326

C

324

D

422

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{x} + \frac{1}{\sqrt{x}} = 3 \) and find the value of \( x^3 + \frac{1}{x^3} \), we can follow these steps: ### Step 1: Let \( y = \sqrt{x} \) We can rewrite the equation as: \[ y + \frac{1}{y} = 3 \] ### Step 2: Square both sides Squaring both sides gives us: \[ \left( y + \frac{1}{y} \right)^2 = 3^2 \] This simplifies to: \[ y^2 + 2 + \frac{1}{y^2} = 9 \] ### Step 3: Rearrange the equation Rearranging the equation, we get: \[ y^2 + \frac{1}{y^2} = 9 - 2 = 7 \] ### Step 4: Find \( y^3 + \frac{1}{y^3} \) We can use the identity: \[ y^3 + \frac{1}{y^3} = \left( y + \frac{1}{y} \right) \left( y^2 + \frac{1}{y^2} \right) - \left( y + \frac{1}{y} \right) \] Substituting the known values: \[ y^3 + \frac{1}{y^3} = 3 \cdot 7 - 3 \] ### Step 5: Calculate the result Calculating this gives: \[ y^3 + \frac{1}{y^3} = 21 - 3 = 18 \] ### Step 6: Conclusion Thus, the value of \( x^3 + \frac{1}{x^3} \) is: \[ \boxed{18} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=sqrtx-(1)/(sqrtx)

y = x+sqrtx+1/sqrtx

If sqrtx= sqrt3-sqrt5 , then the value of x^2-16x+6 is : यदि sqrtx= sqrt3-sqrt5 , x^2-16x+6 का मान ज्ञात करें :

If x = 5+2sqrt6 , then the value of (sqrtx +frac(1)(sqrtx)) is (A) 2sqrt2 (B) 3sqrt2 (C ) 2sqrt3 (D) 3sqrt3

If sqrtx + (1)/( sqrtx) = 2 cos theta, then x ^(6) +x^(-6)=

If x = 2 + sqrt3 then the value of sqrtx + 1/sqrtx is

1/(sqrt(x+1) - sqrtx)