Home
Class 14
MATHS
If x-3/x=6,x ne 0, then the value of (x^...

If `x-3/x=6,x ne 0`, then the value of `(x^4-(27)/(x^2))/(x^2-3x-3)` is :

A

54

B

270

C

80

D

90

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given \( \frac{x - 3}{x} = 6 \) and find the value of \( \frac{x^4 - \frac{27}{x^2}}{x^2 - 3x - 3} \), we will follow these steps: ### Step 1: Solve for \( x \) Starting with the equation: \[ \frac{x - 3}{x} = 6 \] We can multiply both sides by \( x \) (since \( x \neq 0 \)): \[ x - 3 = 6x \] Rearranging gives: \[ x - 6x = 3 \implies -5x = 3 \implies x = -\frac{3}{5} \] ### Step 2: Substitute \( x \) into the expression Now we substitute \( x = -\frac{3}{5} \) into the expression \( \frac{x^4 - \frac{27}{x^2}}{x^2 - 3x - 3} \). ### Step 3: Calculate \( x^4 \) First, we calculate \( x^4 \): \[ x^4 = \left(-\frac{3}{5}\right)^4 = \frac{81}{625} \] ### Step 4: Calculate \( x^2 \) Next, we calculate \( x^2 \): \[ x^2 = \left(-\frac{3}{5}\right)^2 = \frac{9}{25} \] ### Step 5: Calculate \( \frac{27}{x^2} \) Now, we calculate \( \frac{27}{x^2} \): \[ \frac{27}{x^2} = \frac{27}{\frac{9}{25}} = 27 \cdot \frac{25}{9} = \frac{675}{9} = 75 \] ### Step 6: Substitute into the numerator Now, we substitute into the numerator: \[ x^4 - \frac{27}{x^2} = \frac{81}{625} - 75 = \frac{81}{625} - \frac{46875}{625} = \frac{81 - 46875}{625} = \frac{-46894}{625} \] ### Step 7: Calculate the denominator Now, we calculate the denominator \( x^2 - 3x - 3 \): \[ x^2 - 3x - 3 = \frac{9}{25} - 3\left(-\frac{3}{5}\right) - 3 \] Calculating \( -3\left(-\frac{3}{5}\right) = \frac{9}{5} \): \[ = \frac{9}{25} + \frac{45}{25} - \frac{75}{25} = \frac{9 + 45 - 75}{25} = \frac{-21}{25} \] ### Step 8: Combine the results Now we can combine the results: \[ \frac{x^4 - \frac{27}{x^2}}{x^2 - 3x - 3} = \frac{\frac{-46894}{625}}{\frac{-21}{25}} = \frac{-46894 \cdot 25}{-21 \cdot 625} = \frac{46894 \cdot 25}{21 \cdot 625} \] ### Step 9: Simplify the expression Now we simplify: \[ = \frac{46894 \cdot 25}{21 \cdot 625} = \frac{46894}{21 \cdot 25} = \frac{46894}{525} \] ### Final Answer Thus, the value of the expression is: \[ \frac{46894}{525} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(4) - 3x^(2) - 1 = 0 , then the value of (x^(6)-3x^(2)+(3)/(x^(2))-(1)/(x^(6))+1) is :

If x^2 - 3x + 1 = 0 , then the value of (x^6 + x^4 + x^2 + 1)/(x^3) will be

If 4x + 3a = 0 , then what is the value of (x^(2) + ax + a^(2))/(x^(3) - a^(3)) -(x^(2) -ax + a^(2))/(x^(3) + a^(3)) ?