Home
Class 14
MATHS
If cos theta=(5)/(13). Then the value of...

If `cos theta=(5)/(13)`. Then the value of `tan^2theta+sec^2 theta` is equal to:

A

`(313)/(25)`

B

`(323)/(25)`

C

`(233)/(25)`

D

`(303)/(25)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \cos \theta = \frac{5}{13} \) and we need to find the value of \( \tan^2 \theta + \sec^2 \theta \), we can follow these steps: ### Step 1: Identify the values of the triangle Given \( \cos \theta = \frac{5}{13} \), we can interpret this in the context of a right triangle. Here, the adjacent side (base) is 5 and the hypotenuse is 13. ### Step 2: Use Pythagorean theorem to find the opposite side We can find the length of the opposite side (perpendicular) using the Pythagorean theorem: \[ \text{hypotenuse}^2 = \text{base}^2 + \text{perpendicular}^2 \] Substituting the known values: \[ 13^2 = 5^2 + \text{perpendicular}^2 \] Calculating the squares: \[ 169 = 25 + \text{perpendicular}^2 \] Now, isolate the perpendicular: \[ \text{perpendicular}^2 = 169 - 25 = 144 \] Taking the square root: \[ \text{perpendicular} = \sqrt{144} = 12 \] ### Step 3: Calculate \( \tan \theta \) Now that we have the lengths of all sides, we can calculate \( \tan \theta \): \[ \tan \theta = \frac{\text{perpendicular}}{\text{base}} = \frac{12}{5} \] ### Step 4: Calculate \( \sec \theta \) Next, we calculate \( \sec \theta \): \[ \sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{5}{13}} = \frac{13}{5} \] ### Step 5: Calculate \( \tan^2 \theta \) and \( \sec^2 \theta \) Now we can find \( \tan^2 \theta \) and \( \sec^2 \theta \): \[ \tan^2 \theta = \left(\frac{12}{5}\right)^2 = \frac{144}{25} \] \[ \sec^2 \theta = \left(\frac{13}{5}\right)^2 = \frac{169}{25} \] ### Step 6: Add \( \tan^2 \theta \) and \( \sec^2 \theta \) Now we add these two results: \[ \tan^2 \theta + \sec^2 \theta = \frac{144}{25} + \frac{169}{25} = \frac{144 + 169}{25} = \frac{313}{25} \] ### Final Answer Thus, the value of \( \tan^2 \theta + \sec^2 \theta \) is: \[ \frac{313}{25} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos theta=5/13 , then the value of tan^2 theta+ sec^2 theta is equal to: यदि cos theta=5/13 , तो tan^2 theta+ sec^2 theta का मान ज्ञात करें :

If cos theta =5/13 , then the value of tan^2 theta +sec^2 theta is equal to: यदि cos theta =5/13 है , तो tan^2 theta +sec^2 theta का मान ज्ञात कीजिए।

If sin theta = (5)/(13), then the values of tan theta and sec theta respectively, are

If 2 sin theta + cos theta = 7/3 then the value of (tan^2 theta - sec^2 theta ) is

If cos theta=(4)/(5) then the value of tan((theta)/(2)), can be equal to

If cos theta=(5)/(13), find the value of (sin^(2)theta-cos^(2)theta)/(2sin theta cos theta)xx(1)/(tan^(2)theta)

If sec theta+tan theta=(1)/(2) The value of tan theta =

If tan theta+sec theta=(2)/(3), then the value of sec theta is

If sec theta +tan theta =P , then cos theta is equal to