Home
Class 14
MATHS
If (sin theta+ cosec theta)^2+(cos theta...

If `(sin theta+ cosec theta)^2+(cos theta+sec theta)^2=k+tan^2 theta+cot^2 theta`, then the value of k is equal to:

A

5

B

7

C

2

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2 = k + \tan^2 \theta + \cot^2 \theta\), we will break it down step by step. ### Step 1: Expand the left-hand side We start by expanding the squares on the left-hand side. \[ (\sin \theta + \csc \theta)^2 = \sin^2 \theta + 2\sin \theta \csc \theta + \csc^2 \theta \] Since \(\csc \theta = \frac{1}{\sin \theta}\), we have: \[ 2\sin \theta \csc \theta = 2 \quad \text{(because \(\sin \theta \cdot \csc \theta = 1\))} \] And \(\csc^2 \theta = 1 + \cot^2 \theta\). Thus, \[ (\sin \theta + \csc \theta)^2 = \sin^2 \theta + 2 + (1 + \cot^2 \theta) = \sin^2 \theta + 3 + \cot^2 \theta \] Now, for \((\cos \theta + \sec \theta)^2\): \[ (\cos \theta + \sec \theta)^2 = \cos^2 \theta + 2\cos \theta \sec \theta + \sec^2 \theta \] Similarly, since \(\sec \theta = \frac{1}{\cos \theta}\): \[ 2\cos \theta \sec \theta = 2 \] And \(\sec^2 \theta = 1 + \tan^2 \theta\). Thus, \[ (\cos \theta + \sec \theta)^2 = \cos^2 \theta + 2 + (1 + \tan^2 \theta) = \cos^2 \theta + 3 + \tan^2 \theta \] ### Step 2: Combine the results Now, we combine both expansions: \[ (\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2 = (\sin^2 \theta + 3 + \cot^2 \theta) + (\cos^2 \theta + 3 + \tan^2 \theta) \] Combining like terms: \[ = (\sin^2 \theta + \cos^2 \theta) + 6 + (\tan^2 \theta + \cot^2 \theta) \] Since \(\sin^2 \theta + \cos^2 \theta = 1\): \[ = 1 + 6 + (\tan^2 \theta + \cot^2 \theta) = 7 + \tan^2 \theta + \cot^2 \theta \] ### Step 3: Set the equation equal to the right-hand side Now we have: \[ 7 + \tan^2 \theta + \cot^2 \theta = k + \tan^2 \theta + \cot^2 \theta \] ### Step 4: Solve for \(k\) To find \(k\), we can subtract \(\tan^2 \theta + \cot^2 \theta\) from both sides: \[ 7 = k \] Thus, the value of \(k\) is: \[ \boxed{7} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(sec theta+csc theta)^(2)-(tan theta+cot theta)^(2)=

Prove that (sin theta- "cosec" theta )(cos theta- sec theta )=(1)/(tan theta + cot theta).

(sin theta+sec theta)^(2)+(cos theta+csc theta)^(2)=(1+cos ec theta sec theta)^(2)

Prove that (sin theta + "cosec" theta)^(2)+(cos theta + sec theta)^(2)=(7+ tan^(2) theta + cot^(2) theta).

(sin theta" cosec "theta tan theta cot theta)/(sin^(2)theta+cos^(2)theta)

(cosec theta + sin theta) (sec theta - cos theta) tan theta + cot theta) is equal to

If ((sin theta-cosec theta)(cos theta- sec theta))/(tan^2 theta-sin^2 theta)=r^3 , then r=? यदि ((sin theta-cosec theta)(cos theta- sec theta))/(tan^2 theta-sin^2 theta)=r^3 है, तो r = ?

(cos theta cosec theta-sin theta sec theta)/(cos theta+sin theta)=cosec theta-sec theta