Home
Class 14
MATHS
If 2=x+(1)/(1+(1)/(5+1/2)), then the val...

If `2=x+(1)/(1+(1)/(5+1/2))`, then the value of x is equal to:

A

1

B

`(13)/(15)`

C

`(15)/(13)`

D

`(14)/(13)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2 = x + \frac{1}{1 + \frac{1}{5 + \frac{1}{2}}}\), we will follow these steps: ### Step 1: Simplify the innermost fraction Start with the innermost fraction \(5 + \frac{1}{2}\). \[ 5 + \frac{1}{2} = \frac{10}{2} + \frac{1}{2} = \frac{11}{2} \] **Hint:** When adding fractions, find a common denominator. ### Step 2: Substitute back into the equation Now substitute \(\frac{11}{2}\) back into the equation: \[ 2 = x + \frac{1}{1 + \frac{1}{\frac{11}{2}}} \] ### Step 3: Simplify the next fraction Now simplify \(\frac{1}{\frac{11}{2}}\): \[ \frac{1}{\frac{11}{2}} = \frac{2}{11} \] So now we have: \[ 2 = x + \frac{1}{1 + \frac{2}{11}} \] ### Step 4: Simplify \(1 + \frac{2}{11}\) Next, simplify \(1 + \frac{2}{11}\): \[ 1 + \frac{2}{11} = \frac{11}{11} + \frac{2}{11} = \frac{13}{11} \] ### Step 5: Substitute back into the equation Now substitute \(\frac{13}{11}\) back into the equation: \[ 2 = x + \frac{1}{\frac{13}{11}} \] ### Step 6: Simplify \(\frac{1}{\frac{13}{11}}\) Now simplify \(\frac{1}{\frac{13}{11}}\): \[ \frac{1}{\frac{13}{11}} = \frac{11}{13} \] ### Step 7: Substitute back into the equation Now we have: \[ 2 = x + \frac{11}{13} \] ### Step 8: Isolate \(x\) To find \(x\), subtract \(\frac{11}{13}\) from both sides: \[ x = 2 - \frac{11}{13} \] ### Step 9: Convert \(2\) to a fraction Convert \(2\) to a fraction with a denominator of \(13\): \[ 2 = \frac{26}{13} \] ### Step 10: Perform the subtraction Now perform the subtraction: \[ x = \frac{26}{13} - \frac{11}{13} = \frac{26 - 11}{13} = \frac{15}{13} \] Thus, the value of \(x\) is: \[ \boxed{\frac{15}{13}} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(2,1),(0,x)] and A^(-1)=[(1/2,1/6),(0,1/x)] , then the value of x is equal to

If tan^(-1)(x+2)+tan^(-1)(x-2)-tan^(-1)((1)/(2))=0 , them one of the values of x is equal to

If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=sin^(-1)((2)/(x))+cos^(-1)((2)/(x)) then the value of x is equal to

If x=2^((1)/(3)) +2^(-(1)/(3)) , then the value of 2x^(3) -6x-5 is equal to

If y=1+(1)/(x-1)+(2x)/((x-1)(x-2))+(3x^(2))/((x-1)(x-2)(x-3)) , then the value of -9y'(4) is equal to

If x ( 5 - (2)/(x ) ) = (5)/(x) , then the value of x^(2) + (1)/( x^2) is equal to:

If x(5-2/x)=5/x , then the value of x^2+1/^2 is equal to: यदि x(5-2/x)=5/x , x^2+1/^2 का मान ज्ञात करें :

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to