Home
Class 14
MATHS
If (1)/(4.263)=0.2346, find the value of...

If `(1)/(4.263)=0.2346`, find the value of `(1)/(0.0004263)`.

A

2.346

B

2346

C

4263

D

4.263

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \frac{1}{0.0004263} \) given that \( \frac{1}{4.263} = 0.2346 \), we can follow these steps: ### Step 1: Understand the relationship between the two fractions We know that: \[ \frac{1}{4.263} = 0.2346 \] We need to find \( \frac{1}{0.0004263} \). ### Step 2: Relate \( 0.0004263 \) to \( 4.263 \) Notice that: \[ 0.0004263 = \frac{4.263}{10000} \] This means that \( 0.0004263 \) is \( 4.263 \) divided by \( 10000 \). ### Step 3: Use the property of fractions Using the property of fractions, we can express \( \frac{1}{0.0004263} \) as: \[ \frac{1}{0.0004263} = \frac{1}{\frac{4.263}{10000}} = \frac{10000}{4.263} \] ### Step 4: Substitute the known value Now, we can substitute the known value of \( \frac{1}{4.263} \): \[ \frac{10000}{4.263} = 10000 \times \frac{1}{4.263} = 10000 \times 0.2346 \] ### Step 5: Calculate the final value Now, we calculate: \[ 10000 \times 0.2346 = 2346 \] ### Final Answer Thus, the value of \( \frac{1}{0.0004263} \) is: \[ \boxed{2346} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (3^0+4^-1)+2^3

1/8 -(2x)/4 + 1 = 0 , find the value of x

Find the value of (1/9+1/4^2+1/2^4)^0

If a^2-6a-1=0 then, find the value of a-1/a

Solve 16x^4-1 =0. Find the value of x

If A=[(1,0),(1/2,1)] then find the value of A^50

Find the value of ( 4^0 + 5^-1 ) ÷ ( 5/4 )^-1

Find the value of : (3^-1+4^-1+5^-1)^0