Home
Class 14
MATHS
If alpha+beta=90^@ and alpha=2beta, then...

If `alpha+beta=90^@` and `alpha=2beta`, then the value of `3cos^2alpha-2sin^2beta` is equal to:

A

`3/4`

B

`1/4`

C

`4/3`

D

`3/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equations and relationships. ### Step 1: Set up the equations We know that: 1. \( \alpha + \beta = 90^\circ \) 2. \( \alpha = 2\beta \) ### Step 2: Substitute \( \alpha \) in the first equation Substituting \( \alpha = 2\beta \) into the first equation gives us: \[ 2\beta + \beta = 90^\circ \] This simplifies to: \[ 3\beta = 90^\circ \] ### Step 3: Solve for \( \beta \) Dividing both sides by 3, we find: \[ \beta = 30^\circ \] ### Step 4: Find \( \alpha \) Now, substituting \( \beta \) back into the equation for \( \alpha \): \[ \alpha = 2\beta = 2 \times 30^\circ = 60^\circ \] ### Step 5: Calculate \( 3\cos^2\alpha - 2\sin^2\beta \) Now we need to calculate \( 3\cos^2\alpha - 2\sin^2\beta \): - First, find \( \cos^2\alpha \) and \( \sin^2\beta \): - \( \cos(60^\circ) = \frac{1}{2} \) so \( \cos^2(60^\circ) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \) - \( \sin(30^\circ) = \frac{1}{2} \) so \( \sin^2(30^\circ) = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \) Now substitute these values into the expression: \[ 3\cos^2\alpha - 2\sin^2\beta = 3\left(\frac{1}{4}\right) - 2\left(\frac{1}{4}\right) \] ### Step 6: Simplify the expression Calculating this gives: \[ = \frac{3}{4} - \frac{2}{4} = \frac{1}{4} \] ### Final Answer Thus, the value of \( 3\cos^2\alpha - 2\sin^2\beta \) is: \[ \frac{1}{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha+beta=90^@ , and alpha=2 beta , then the value of 3 cos^2 alpha-2 sin^2 beta is: यदि alpha+beta=90^@ , और alpha=2 beta , तो 3 cos^2 alpha-2 sin^2 beta का मान ज्ञात करें:

If alpha+beta=90^(@),alpha=2beta , then find the value of cos^(2)alpha+sin^(2)beta .

If cos^(2)alpha-sin^(2)alpha=tan^(2)beta , then the value of cos^(2)beta-sin^(2)beta is

If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is

If 0 le alpha, beta le 90^(@) and tan(alpha+beta)=3 and tan(alpha-beta)=2, then value of cos 2 beta is :

If cos alpha+cos beta=0=sin alpha+sin beta, then cos2 alpha+cos2 beta is equal to (a)-2sin(alpha+beta)(b)-2cos(alpha+beta)(c)2sin(alpha+beta)(d)2cos(alpha+beta)

If (cos alpha)/(cos beta)=a and (sin alpha)/(sin beta)=b then the value of sin^(2)beta in terms of a and b

If cos^(2)alpha+cos^(2)beta=2 , then the value of tan^(3)alpha+sin^(5)beta is :