Home
Class 14
MATHS
If (1 + (1)/(2)) (1 + (1)/(4)) (1+(1)/(6...

If `(1 + (1)/(2)) (1 + (1)/(4)) (1+(1)/(6))(1+(1)/(8))(1-(1)/(3))(1-(1)/(5)) (1-(1)/(7))=1 +(1)/(x)` then what is the value of x ?

A

6

B

8

C

5

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ (1 + \frac{1}{2})(1 + \frac{1}{4})(1 + \frac{1}{6})(1 + \frac{1}{8})(1 - \frac{1}{3})(1 - \frac{1}{5})(1 - \frac{1}{7}) = 1 + \frac{1}{x} \] we will simplify the left-hand side step by step. ### Step 1: Simplify Each Term Start by simplifying each term in the product: - \(1 + \frac{1}{2} = \frac{3}{2}\) - \(1 + \frac{1}{4} = \frac{5}{4}\) - \(1 + \frac{1}{6} = \frac{7}{6}\) - \(1 + \frac{1}{8} = \frac{9}{8}\) - \(1 - \frac{1}{3} = \frac{2}{3}\) - \(1 - \frac{1}{5} = \frac{4}{5}\) - \(1 - \frac{1}{7} = \frac{6}{7}\) ### Step 2: Write the Product Now we can write the entire product: \[ \frac{3}{2} \cdot \frac{5}{4} \cdot \frac{7}{6} \cdot \frac{9}{8} \cdot \frac{2}{3} \cdot \frac{4}{5} \cdot \frac{6}{7} \] ### Step 3: Cancel Out Terms Next, we can cancel out terms in the product: - The \(3\) in the numerator of \(\frac{3}{2}\) cancels with the \(3\) in the denominator of \(\frac{2}{3}\). - The \(5\) in the numerator of \(\frac{5}{4}\) cancels with the \(5\) in the denominator of \(\frac{4}{5}\). - The \(7\) in the numerator of \(\frac{7}{6}\) cancels with the \(7\) in the denominator of \(\frac{6}{7}\). After canceling, we are left with: \[ \frac{9}{8} \cdot \frac{2}{6} = \frac{9 \cdot 2}{8 \cdot 6} = \frac{18}{48} = \frac{3}{8} \] ### Step 4: Set the Equation Now, we equate this to the right-hand side of the original equation: \[ \frac{3}{8} = 1 + \frac{1}{x} \] ### Step 5: Isolate \(\frac{1}{x}\) To isolate \(\frac{1}{x}\), we rearrange the equation: \[ \frac{1}{x} = \frac{3}{8} - 1 \] Convert \(1\) to a fraction with a denominator of \(8\): \[ 1 = \frac{8}{8} \] Thus, \[ \frac{1}{x} = \frac{3}{8} - \frac{8}{8} = \frac{3 - 8}{8} = \frac{-5}{8} \] ### Step 6: Solve for \(x\) Taking the reciprocal gives: \[ x = -\frac{8}{5} \] ### Final Answer The value of \(x\) is: \[ x = -\frac{8}{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1)/(1+(1)/(1+(1)/(1+(1)/(x))))= (5)/(8) then what is the value of x ?

If |(8,-5,1),(5,x,1),(6,3,1)| = 2 , then what is the value of x ?

If (1− 1/2)(1− 1/3)(1−1/4)......(1− 1/70)= x/70 then what is the value of x?

Simplify : 8 (1)/(2)-[3 (1)/(4)-:{1(1)/(4) - (1)/(2) ( 1 (1)/(2)-(1)/(3)-(1)/(6))}]

(3)/(4)(1+(1)/(3))(1+(2)/(3))(1-(2)/(5))(1+(6)/(7))(1-(12)/(13))=?(1)/(5)( b )(1)/(6)(c)(1)/(7) (d) None of these

((2)/(3)x+4)((3)/(2)x+6)-((1)/(7)x-1)((1)/(7)x+1)

If |{:(8,-5,1),(5,x,1),(6,3,1):}|=2 then what is the value of x ?