Home
Class 14
MATHS
What is the value of (1)/( 3 xx 7) + (1)...

What is the value of `(1)/( 3 xx 7) + (1)/( 7 xx 11) + (1)/( 11 xx 15) + . . . + (1)/(899 xx 903)` ?

A

21/509

B

18/403

C

18/403

D

29/31

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ S = \frac{1}{3 \times 7} + \frac{1}{7 \times 11} + \frac{1}{11 \times 15} + \ldots + \frac{1}{899 \times 903} \] ### Step 1: Identify the pattern in the series The general term of the series can be expressed as: \[ \frac{1}{(4n - 1)(4n + 3)} \] where \( n \) starts from 1 and goes up to 225 (since \( 4n - 1 = 899 \) when \( n = 225 \)). ### Step 2: Rewrite the general term using partial fractions We can express the general term using partial fractions: \[ \frac{1}{(4n - 1)(4n + 3)} = \frac{A}{4n - 1} + \frac{B}{4n + 3} \] Multiplying through by the denominator: \[ 1 = A(4n + 3) + B(4n - 1) \] ### Step 3: Solve for A and B Expanding and equating coefficients, we have: \[ 1 = (4A + 4B)n + (3A - B) \] Setting the coefficients equal gives us the system: 1. \( 4A + 4B = 0 \) 2. \( 3A - B = 1 \) From the first equation, \( A + B = 0 \) implies \( B = -A \). Substituting into the second equation: \[ 3A - (-A) = 1 \implies 4A = 1 \implies A = \frac{1}{4} \] \[ B = -\frac{1}{4} \] ### Step 4: Rewrite the general term Thus, we can rewrite the general term as: \[ \frac{1}{(4n - 1)(4n + 3)} = \frac{1/4}{4n - 1} - \frac{1/4}{4n + 3} \] ### Step 5: Write the sum Now we can write the sum \( S \) as: \[ S = \frac{1}{4} \left( \left( \frac{1}{3} - \frac{1}{7} \right) + \left( \frac{1}{7} - \frac{1}{11} \right) + \left( \frac{1}{11} - \frac{1}{15} \right) + \ldots + \left( \frac{1}{899} - \frac{1}{903} \right) \right) \] ### Step 6: Notice the telescoping nature The series telescopes, meaning most terms cancel out: \[ S = \frac{1}{4} \left( \frac{1}{3} - \frac{1}{903} \right) \] ### Step 7: Calculate the final value Calculating the remaining terms: \[ S = \frac{1}{4} \left( \frac{1}{3} - \frac{1}{903} \right) = \frac{1}{4} \left( \frac{903 - 3}{3 \times 903} \right) = \frac{1}{4} \left( \frac{900}{3 \times 903} \right) = \frac{1}{4} \left( \frac{300}{903} \right) \] ### Step 8: Simplify Finally, simplifying gives: \[ S = \frac{75}{903} = \frac{25}{301} \] ### Final Answer Thus, the value of the sum is: \[ \boxed{\frac{25}{301}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (1)/(7)times(1)/(7)-:(2)/(7) ?

The value of (1)/(1xx4)+(1)/(4xx7)+(1)/(7xx10)+…(1)/(16xx19) is

7 xx 11 xx 13 xx 15 + 15 is a

The sum of the series (1)/(3xx7)+(1)/(7xx11)+(1)/(11xx15)+.... is

find the value (6/7 xx 3/4) + (6/7 xx 11/4)

What is the value of/का मान क्या है? 1/(3xx7)+1/(7xx11)+1/(11xx15)+...+1/(899xx903) =?

What is the value of [(1.7)^(3) - (1. 2)^(3)]//[(1 . 7)^(2) + (1. 7 xx 1. 2) + (1.2)^(2)] ?

What is the value of [(1.7)^(3) - (1. 2)^(3)]//[(1 . 7)^(2) + (1. 7 xx 1. 2) + (1.2)^(2)] ?