Home
Class 14
MATHS
If x + (1 / x)= (sqrt(3) + 1)/ 2 then w...

If ` x + (1 / x)`= `(sqrt(3) + 1)/ 2` then what is the value of ` x^(4) + 1 / x^(4)` ?

A

`( 4 sqrt"'3 - 1) // 4`

B

`( 4 sqrt""3 + 1 ) // 2`

C

`(-4 sqrt""3 - 1) // 4`

D

`(-4 sqrt""3 - 1 ) // 2 `

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x^4 + \frac{1}{x^4} \) given that \( x + \frac{1}{x} = \frac{\sqrt{3} + 1}{2} \), we can follow these steps: ### Step 1: Square the given equation Start by squaring both sides of the equation: \[ \left( x + \frac{1}{x} \right)^2 = \left( \frac{\sqrt{3} + 1}{2} \right)^2 \] This expands to: \[ x^2 + 2 + \frac{1}{x^2} = \frac{(\sqrt{3} + 1)^2}{4} \] ### Step 2: Calculate the right-hand side Now calculate \( (\sqrt{3} + 1)^2 \): \[ (\sqrt{3} + 1)^2 = 3 + 2\sqrt{3} + 1 = 4 + 2\sqrt{3} \] Thus, we have: \[ x^2 + 2 + \frac{1}{x^2} = \frac{4 + 2\sqrt{3}}{4} \] ### Step 3: Simplify the equation This simplifies to: \[ x^2 + \frac{1}{x^2} + 2 = 1 + \frac{\sqrt{3}}{2} \] Subtract 2 from both sides: \[ x^2 + \frac{1}{x^2} = 1 + \frac{\sqrt{3}}{2} - 2 \] This simplifies to: \[ x^2 + \frac{1}{x^2} = \frac{\sqrt{3}}{2} - 1 \] ### Step 4: Square again to find \( x^4 + \frac{1}{x^4} \) Now square \( x^2 + \frac{1}{x^2} \): \[ \left( x^2 + \frac{1}{x^2} \right)^2 = \left( \frac{\sqrt{3}}{2} - 1 \right)^2 \] This expands to: \[ x^4 + 2 + \frac{1}{x^4} = \left( \frac{\sqrt{3}}{2} - 1 \right)^2 \] ### Step 5: Calculate the right-hand side Calculate \( \left( \frac{\sqrt{3}}{2} - 1 \right)^2 \): \[ \left( \frac{\sqrt{3}}{2} - 1 \right)^2 = \left( \frac{\sqrt{3}}{2} - \frac{2}{2} \right)^2 = \left( \frac{\sqrt{3} - 2}{2} \right)^2 = \frac{(\sqrt{3} - 2)^2}{4} \] Expanding \( (\sqrt{3} - 2)^2 \): \[ (\sqrt{3} - 2)^2 = 3 - 4\sqrt{3} + 4 = 7 - 4\sqrt{3} \] Thus, we have: \[ x^4 + 2 + \frac{1}{x^4} = \frac{7 - 4\sqrt{3}}{4} \] ### Step 6: Solve for \( x^4 + \frac{1}{x^4} \) Subtract 2 from both sides: \[ x^4 + \frac{1}{x^4} = \frac{7 - 4\sqrt{3}}{4} - 2 \] Convert 2 into a fraction with a denominator of 4: \[ 2 = \frac{8}{4} \] Thus: \[ x^4 + \frac{1}{x^4} = \frac{7 - 4\sqrt{3} - 8}{4} = \frac{-1 - 4\sqrt{3}}{4} \] ### Final Answer Therefore, the value of \( x^4 + \frac{1}{x^4} \) is: \[ \boxed{\frac{-1 - 4\sqrt{3}}{4}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+(1//x)=(sqrt3+1)//2 , then what is the value of x^4+(1//x^4) ? यदि x+(1//x)=(sqrt3+1)//2 है, तो x^4+(1//x^4) का मान क्या है?

If x = 1 + sqrt(2) , then what is the value of x^4 - 4x^3 + 4x^2 ?