Home
Class 14
MATHS
If a - (1/a) = b, b - (1 / b) = c and c...

If ` a - (1/a) = b, b - (1 / b) = c and c - (1 / c) = a ` then what is the value of ` (1 / ab) + (1 / bc) + (1 / ca)` ?

A

`-3`

B

`-6`

C

`-1`

D

`-9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equations: 1. **Given Equations**: \[ a - \frac{1}{a} = b \] \[ b - \frac{1}{b} = c \] \[ c - \frac{1}{c} = a \] 2. **Rearranging the Equations**: We can rearrange each equation to express \(b\), \(c\), and \(a\) in terms of \(a\), \(b\), and \(c\) respectively: \[ b = a - \frac{1}{a} \] \[ c = b - \frac{1}{b} = \left(a - \frac{1}{a}\right) - \frac{1}{\left(a - \frac{1}{a}\right)} \] \[ a = c - \frac{1}{c} \] 3. **Finding the Expression**: We need to find the value of: \[ \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} \] 4. **Using the Identity**: From the rearranged equations, we can derive a useful identity. We know: \[ a - \frac{1}{a} + b - \frac{1}{b} + c - \frac{1}{c} = 0 \] This leads to: \[ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = a + b + c \] 5. **Squaring the Identity**: Now, squaring both sides: \[ \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)^2 = (a + b + c)^2 \] Expanding both sides gives: \[ \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + 2\left(\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}\right) = a^2 + b^2 + c^2 + 2(ab + bc + ca) \] 6. **Setting Up the Equation**: From the earlier steps, we can set up the equation: \[ 0 = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} - 6 + 2\left(\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}\right) \] 7. **Solving for the Desired Expression**: Rearranging gives: \[ 2\left(\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}\right) = 6 - \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right) \] Since we know that \(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = 6\), we can substitute: \[ 2\left(\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}\right) = 6 - 6 = 0 \] Thus: \[ \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} = 0 \] 8. **Final Answer**: Therefore, the value of \(\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}\) is: \[ \boxed{-3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If ab + bc + ca = 0 , then the value of 1/(a^2 - bc) + 1/(b^2 - ca) + 1/(c^2 - ab) will be :

If a+b+c=1 , the greatest value of (ab)/(a+b)+(bc)/(b+c)+(ca)/(c+a) , is

If a + b + c = 1, ab + bc + ca = 2 and abc = 3, then the value of a^4 +b^4 +c^4 is equal to _____

Solve the equation, (x - ab)/(a + b) + (x - bc)/(b + c) + (x - ca)/(c + a)= a + b + c . What happens if 1/(a + b) + 1/( b + c) + 1/(c + a) = 0