Home
Class 14
MATHS
If a^(2)sec^(2)x-b^(2)tan^(2)x=c^(2) ...

If `a^(2)sec^(2)x-b^(2)tan^(2)x=c^(2)` then the value of `(sec^(2)x+tan^(2)x)` is equal to (assume `b^(2)nea^(2))`

A

`(b^(2)-a^(2)+2c^(2))/(b^(2)+a^(2))`

B

`(b^(2) +a^(2)-2c^(2))/(b^(2)-a^(2))`

C

`(b^(2)-a^(2) -2c^(2))/(b^(2)+a^(2))`

D

`(b^(2)-a^(2))/(b^(2)+a^(2)+2c^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(2)sec^(2)x+b^(2)tan^(2)x=c^(2) then the value of sec^(2)x+tan^(2)x is equal to (assume b^(2)!=a^(2) )

int sec^(2)x-tan^(2)x

sec^(2)2x=1-tan2x

int sec^2x tan^(2)xdx

The value of int tan^(3)2x sec2xdx is equal to

log (sec 2x +tan 2 x)

If sec^(2)x+tan^(2)x=7th en x=

The value of int e^(tan x)(x sec^(2)x+sin2x)dx is equal to

The value of int e^(tan x)(x sec^(2)x+sin2x)dx is equal to

sec ^ (2) 2x = 1-tan2x