Home
Class 14
MATHS
IF 2 sin theta-8 cos^2 theta+5=0, 0^@ lt...

IF `2 sin theta-8 cos^2 theta+5=0, 0^@ lt theta lt 90^@` then what is the value of `(tan 2 theta+ cosec 2 theta)`

A

`3 sqrt3`

B

`(4 sqrt3)/3`

C

`(5 sqrt3)/3`

D

`2 sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2 \sin \theta - 8 \cos^2 \theta + 5 = 0\) for \(0^\circ < \theta < 90^\circ\) and find the value of \(\tan 2\theta + \csc 2\theta\), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 2 \sin \theta - 8 \cos^2 \theta + 5 = 0 \] We know that \(\cos^2 \theta = 1 - \sin^2 \theta\). Thus, we can rewrite the equation in terms of \(\sin \theta\): \[ 2 \sin \theta - 8(1 - \sin^2 \theta) + 5 = 0 \] Expanding this gives: \[ 2 \sin \theta - 8 + 8 \sin^2 \theta + 5 = 0 \] Simplifying, we have: \[ 8 \sin^2 \theta + 2 \sin \theta - 3 = 0 \] ### Step 2: Solve the quadratic equation Now we can solve the quadratic equation \(8 \sin^2 \theta + 2 \sin \theta - 3 = 0\) using the quadratic formula: \[ \sin \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \(a = 8\), \(b = 2\), and \(c = -3\): \[ \sin \theta = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 8 \cdot (-3)}}{2 \cdot 8} \] Calculating the discriminant: \[ \sin \theta = \frac{-2 \pm \sqrt{4 + 96}}{16} = \frac{-2 \pm \sqrt{100}}{16} = \frac{-2 \pm 10}{16} \] This gives us two possible solutions: \[ \sin \theta = \frac{8}{16} = \frac{1}{2} \quad \text{or} \quad \sin \theta = \frac{-12}{16} = -\frac{3}{4} \] Since \(\sin \theta\) must be positive in the interval \(0^\circ < \theta < 90^\circ\), we have: \[ \sin \theta = \frac{1}{2} \] ### Step 3: Find \(\theta\) From \(\sin \theta = \frac{1}{2}\), we find: \[ \theta = 30^\circ \] ### Step 4: Calculate \(\tan 2\theta\) and \(\csc 2\theta\) Now we need to calculate \(\tan 2\theta\) and \(\csc 2\theta\): \[ 2\theta = 60^\circ \] Thus: \[ \tan 2\theta = \tan 60^\circ = \sqrt{3} \] And: \[ \csc 2\theta = \csc 60^\circ = \frac{2}{\sqrt{3}} \] ### Step 5: Find \(\tan 2\theta + \csc 2\theta\) Now we add these two values: \[ \tan 2\theta + \csc 2\theta = \sqrt{3} + \frac{2}{\sqrt{3}} \] To combine these, we can rationalize: \[ = \sqrt{3} + \frac{2}{\sqrt{3}} = \frac{3}{\sqrt{3}} + \frac{2}{\sqrt{3}} = \frac{5}{\sqrt{3}} \] Thus, the final answer is: \[ \tan 2\theta + \csc 2\theta = \frac{5}{\sqrt{3}} \]
Promotional Banner