Home
Class 14
MATHS
If a + b + c = 7 and ab + bc + ca = -6, ...

If a + b + c = 7 and ab + bc + ca = -6, then the value of `a^(3) + b^(3) + c^(3) - 3abc` is:

A

a) 469

B

b) 472

C

c) 463

D

d) 479

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^3 + b^3 + c^3 - 3abc \) given the equations \( a + b + c = 7 \) and \( ab + bc + ca = -6 \). ### Step 1: Use the identity for \( a^3 + b^3 + c^3 - 3abc \) We can use the identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] ### Step 2: Calculate \( a^2 + b^2 + c^2 \) We know: \[ a + b + c = 7 \] Now, we will square both sides: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \] Substituting the known values: \[ 7^2 = a^2 + b^2 + c^2 + 2(-6) \] \[ 49 = a^2 + b^2 + c^2 - 12 \] Now, solving for \( a^2 + b^2 + c^2 \): \[ a^2 + b^2 + c^2 = 49 + 12 = 61 \] ### Step 3: Substitute into the identity Now we can substitute \( a + b + c \) and \( a^2 + b^2 + c^2 \) into the identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] We already have: - \( a + b + c = 7 \) - \( ab + ac + bc = -6 \) - \( a^2 + b^2 + c^2 = 61 \) Now calculate \( a^2 + b^2 + c^2 - ab - ac - bc \): \[ a^2 + b^2 + c^2 - ab - ac - bc = 61 - (-6) = 61 + 6 = 67 \] ### Step 4: Final calculation Now substitute these values back into the identity: \[ a^3 + b^3 + c^3 - 3abc = 7 \times 67 = 469 \] Thus, the final value is: \[ \boxed{469} \]
Promotional Banner