Home
Class 14
MATHS
If 7 sin^(2) 0 - cos^(2) 0 + 2 sin 0 = 2...

If `7 sin^(2) 0 - cos^(2) 0 + 2 sin 0 = 2, 0^(@) lt 0 lt 90^(@)`, then the value of `(sec 20 + cot 20)/(cosec 20 + tan 20)` is:

A

`(2)/(5)(1+sqrt(3))`

B

`(1)/(5)(1+2sqrt(3))`

C

`(2sqrt(3)+1)/3`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will start with the equation provided and work through to find the value of the expression. ### Step 1: Solve the equation We start with the equation: \[ 7 \sin^2 \theta - \cos^2 \theta + 2 \sin \theta = 2 \] Using the identity \(\cos^2 \theta = 1 - \sin^2 \theta\), we can rewrite the equation: \[ 7 \sin^2 \theta - (1 - \sin^2 \theta) + 2 \sin \theta = 2 \] This simplifies to: \[ 7 \sin^2 \theta + \sin^2 \theta + 2 \sin \theta - 1 = 2 \] Combining like terms gives: \[ 8 \sin^2 \theta + 2 \sin \theta - 1 = 2 \] Now, we move everything to one side: \[ 8 \sin^2 \theta + 2 \sin \theta - 3 = 0 \] ### Step 2: Use the quadratic formula This is a quadratic equation in terms of \(\sin \theta\). We can use the quadratic formula: \[ \sin \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \(a = 8\), \(b = 2\), and \(c = -3\). Calculating the discriminant: \[ b^2 - 4ac = 2^2 - 4 \cdot 8 \cdot (-3) = 4 + 96 = 100 \] Now applying the quadratic formula: \[ \sin \theta = \frac{-2 \pm \sqrt{100}}{2 \cdot 8} = \frac{-2 \pm 10}{16} \] This gives us two possible solutions: 1. \(\sin \theta = \frac{8}{16} = \frac{1}{2}\) 2. \(\sin \theta = \frac{-12}{16} = -\frac{3}{4}\) (not valid since \(\sin \theta\) must be between -1 and 1) Thus, we have: \[ \sin \theta = \frac{1}{2} \] This implies: \[ \theta = 30^\circ \] ### Step 3: Calculate the expression Now we need to find the value of: \[ \frac{\sec 2\theta + \cot 2\theta}{\csc 2\theta + \tan 2\theta} \] Since \(\theta = 30^\circ\), we have: \[ 2\theta = 60^\circ \] Calculating each trigonometric function: - \(\sec 60^\circ = \frac{1}{\cos 60^\circ} = \frac{1}{\frac{1}{2}} = 2\) - \(\cot 60^\circ = \frac{1}{\tan 60^\circ} = \frac{1}{\sqrt{3}}\) - \(\csc 60^\circ = \frac{1}{\sin 60^\circ} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}}\) - \(\tan 60^\circ = \sqrt{3}\) Substituting these values into the expression: \[ \frac{2 + \frac{1}{\sqrt{3}}}{\frac{2}{\sqrt{3}} + \sqrt{3}} \] ### Step 4: Simplify the expression Finding a common denominator for the numerator: \[ \frac{2\sqrt{3} + 1}{\sqrt{3}} \] For the denominator: \[ \frac{2 + 3}{\sqrt{3}} = \frac{5}{\sqrt{3}} \] Now we have: \[ \frac{\frac{2\sqrt{3} + 1}{\sqrt{3}}}{\frac{5}{\sqrt{3}}} = \frac{2\sqrt{3} + 1}{5} \] ### Final Result Thus, the value of the expression is: \[ \frac{2\sqrt{3} + 1}{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin x - cos x = 0, 0^(@) lt x lt 90^(@) then the value of ( sec x + cosec x)^(2) is:

If 7 sin ^(2) x + 3 cos ^(2) x =4, 0 lt x lt 90^(@), then what is the value of tan x ?

If sin 7x = cos 11x , 0^(@) lt x lt 90^(@) , then the value of tan 9x is:

If tan x = 1, 0 lt x lt 90^(@) , then what is the value of 2 sin x cos x?

If sin 4 A - cos 2A = cos 4A - sin 2A, (0 lt A lt (pi)/(4)) then the value of tan 4A is

If 2 cos^(2) theta = 3 sin theta, 0^(@) lt theta lt 90^(@) , then the value of ((1)/(2) cosec^(2) theta - cot^(2) theta) is: