Home
Class 14
MATHS
If x^(2) -2 sqrt(5)x +1=0, then what is ...

If `x^(2) -2 sqrt(5)x +1=0`, then what is the value of `x^(5) +(1)/(x^(5))`?

A

`406sqrt(5)`

B

`610sqrt(5)`

C

`408sqrt(5)`

D

`612sqrt(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^{2} - 2\sqrt{5}x + 1 = 0 \) and find the value of \( x^{5} + \frac{1}{x^{5}} \), we can follow these steps: ### Step 1: Solve the Quadratic Equation We start with the quadratic equation: \[ x^{2} - 2\sqrt{5}x + 1 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \), where \( a = 1, b = -2\sqrt{5}, c = 1 \): \[ x = \frac{2\sqrt{5} \pm \sqrt{(2\sqrt{5})^{2} - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] Calculating the discriminant: \[ (2\sqrt{5})^{2} - 4 = 20 - 4 = 16 \] Thus, we have: \[ x = \frac{2\sqrt{5} \pm 4}{2} \] This gives us two possible values for \( x \): \[ x = \sqrt{5} + 2 \quad \text{or} \quad x = \sqrt{5} - 2 \] ### Step 2: Calculate \( x + \frac{1}{x} \) Next, we calculate \( x + \frac{1}{x} \): \[ x + \frac{1}{x} = 2\sqrt{5} \] ### Step 3: Calculate \( x^{2} + \frac{1}{x^{2}} \) Using the identity: \[ x^{2} + \frac{1}{x^{2}} = (x + \frac{1}{x})^{2} - 2 \] Substituting \( x + \frac{1}{x} = 2\sqrt{5} \): \[ x^{2} + \frac{1}{x^{2}} = (2\sqrt{5})^{2} - 2 = 20 - 2 = 18 \] ### Step 4: Calculate \( x^{3} + \frac{1}{x^{3}} \) Using the identity: \[ x^{3} + \frac{1}{x^{3}} = (x + \frac{1}{x})(x^{2} + \frac{1}{x^{2}}) - (x + \frac{1}{x}) \] Substituting the known values: \[ x^{3} + \frac{1}{x^{3}} = (2\sqrt{5})(18) - (2\sqrt{5}) = 36\sqrt{5} - 2\sqrt{5} = 34\sqrt{5} \] ### Step 5: Calculate \( x^{5} + \frac{1}{x^{5}} \) Using the identity: \[ x^{5} + \frac{1}{x^{5}} = (x^{2} + \frac{1}{x^{2}})(x^{3} + \frac{1}{x^{3}}) - (x + \frac{1}{x}) \] Substituting the known values: \[ x^{5} + \frac{1}{x^{5}} = (18)(34\sqrt{5}) - (2\sqrt{5}) = 612\sqrt{5} - 2\sqrt{5} = 610\sqrt{5} \] ### Final Answer Thus, the value of \( x^{5} + \frac{1}{x^{5}} \) is: \[ \boxed{610\sqrt{5}} \]
Promotional Banner